Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Ho-Ming Yeh This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, Taiwan 251, R.O.C.


 

Received: August 9, 2012
Accepted: January 7, 2013
Publication Date: June 1, 2013

Download Citation: ||https://doi.org/10.6180/jase.2013.16.2.06  


ABSTRACT


This work investigated the plate spacing effect on binary mixture separation removal rate in a countercurrent-flow Frazier scheme with N flat-plate thermal diffusion columns of the same size and with fixed total expense. The equations for estimating optimal plate spacing and the corresponding maximum removal rate are developed. Considerable improvement in performance is obtainable when thermal diffusion columns with optimal plate spacing are employed for operation. The fact that the countercurrent-flow operation is more effective than the cocurrent-flow operation in a Frazier scheme, is also confirmed.


Keywords: Thermal Diffusion, Mass Transfer, Frazier Scheme, Optimal Plate Spacing, Countercurrent Flow, Mathematical Modeling


REFERENCES


  1. [1] Grodzka, P. G. and Fracemire, B., “Clusius-Dickel Separation: A New Look at an Old Technigue,” Sep. Sci., Vol. 12, No. 2, pp. 103169 (1997). doi: 10.1103/ RevModPhys.18.151
  2. [2] Clusius, K. and Dickel, G., “The Separation-Tube Process for Liquid,” Z. Phys. Chem., Vol. B44, pp. 397 450 (1939).
  3. [3] Power, J. E. and Wilke, C. R., “Separation of Liquid by Thermal Diffusion,” AIChE J., Vol. 3, pp. 213222 (1957). doi: 10.1103/RevModPhys.18.151
  4. [4] Yeh, H. M., “The Best Performance in Spiral Wired Thermal Diffusion,” Chem. Eng. Comm., Vol. 189, pp. 528542 (2002). doi: 10.1080/00986440212091
  5. [5] Yeh, H. M., “Thermal Diffusion in Spiral Wired Columns with Transverse Sampling Streams,” Chem. Eng. Comm., Vol. 191, pp. 15391553 (2004). doi: 10.1080/00986440490472698
  6. [6] Yeh, H. M., “The Best Performance of Spiral Wired Thermal Diffusion Column of Countercurrent-Flow Frazier Scheme,” Sep. Puri. Technol., Vol. 53, pp. 2132 (2007). doi: 10.1016/j.seppur.2005.11.038
  7. [7] Yeh, H. M., Tsai, S. W. and Lin, C. S., “A Steady of the Separation Efficiency in Thermal Diffusion Column with a Permeable Vertical Barrier,” AIChE J., Vol. 32, pp. 971980 (1986). doi: 10.1002/aic.690320607
  8. [8] Frazier, D., “Analysis of Transverse-Flow Thermal Diffusion,” Ind. Eng. Chem. Process Des. Dev., Vol. 1, pp. 237240 (1962). doi: 10.1021/i260004a001
  9. [9] Grasselli, R. and Frazier, D. A., “Comparative Steady of Continuous Liquid Thermal Diffusion Systems,” Ind. Eng. Chem. Process Des. Dev., Vol. 1, pp. 241 248 (1962). doi: 10.1021/i260004a002
  10. [10] Furry, W. H., Jones, R. C. and Onsager, L., “On the Theory of Isotopes Separation by Thermal Diffusion,” Phys. Rev., Vol. 55, pp. 10831095 (1939). doi: 10. 1103/PhysRev.55.1083
  11. [11] Jones, R. C. and Furry, W. H., “The Separation of Isotopes by Thermal Diffusion,” Rev. Mod. Phys., Vol. 18, No. 2, pp. 151224 (1946). doi: 10.1103/RevMod Phys.18.151
  12. [12] Rabinovich, G. D., “Theory of Thermodiffusion Separation According to the Frazier Scheme,” Inzh. Fiz. Zh., Vol. 31, pp. 514521 (1976).
  13. [13] Sovorov, A. V. and Rabinovich, G. D., “Therory of a Thermal Diffusion Apparatus with Transverse Fow,” Inzh. Fiz. Zh., Vol. 41, pp. 231236 (1981).
  14. [14] Yeh, H. M., “The Optimum Plate-Spacing for the Best Performance in Flat-Plate Thermal Diffusion Columns of the Frazier Scheme,” Chem. Eng. Comm., Vol. 165, pp. 227244 (1998). doi: 10.1080/0098644980891 2378
  15. [15] Yeh, H. M., “Thermal Diffusion in a CountercurrentFlow Frazier Scheme with Optimum Plate Aspect Ratio for the Best Performance,” J. Chin. Inst. Chem. Engrs., Vol. 37, pp. 617622 (2006).
  16. [16] Chueh, P. L. and Yeh, H. M., “Thermal Diffusion in a Flat-Plate Column Inclined for Improved Performance,” AIChE J., Vol. 13, pp. 3741 (1967). doi: 10.1002/ aic.690130109


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.