Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Aurangzaib1, A. R. M. Kasim1, N. F. Mohammad1 and Sharidan Shafie This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia JB, 81310 Skudai, Johor, Malaysia


Received: April 26, 2012
Accepted: January 7, 2013
Publication Date: June 1, 2013

Download Citation: ||  


The combined effects of Soret and Dufour on an unsteady mixed convection magnetohydrodynamics heat and mass transfer in a micropolar fluid saturated Darcian porous medium in the presence of thermal radiation, heat generation, Ohmic heating and chemical reaction have been investigated. The transformed boundary layer equations are solved numerically by applying Keller-box method. Comparison of numerical results is made with the previous published results under limiting cases and found to be in good agreement. In this study, we consider both strong concentration and weak concentration. The influence of various embedded flow parameters on the local skin friction, the local Nusselt number and the local Sherwood number have been analyzed through graphs carefully. It is found that there is a smooth transition from small time solution (ζ≈0) to large time solution (ζ≈1).

Keywords: Soret and Dufour, Micropolar Fluid, Porous Medium, MHD


  1. [1] Eringen, A. C., “Theory of Micropolar Fluids,” J. Math. Mech., Vol. 16, pp. 118 (1966). doi: 10.1016/ 0020-7225(73)90038-4
  2. [2] Ariman, T., Turk, M. A. and Sylvester, N. D., “Microcontinuum Fluid MechanicsReview,” Int. J. Eng. Sci., Vol. 11, pp. 905930 (1973).
  3. [3] Ariman, T., Turk, M. A. and Sylvester, N. D., “Application of Microcontinuum Fluid Mechanics,” Int. J. Eng. Sci., Vol. 12, pp. 273293 (1974). doi: 10.1016/ 0020-7225(74)90059-7
  4. [4] ukaszewicz, G., Micropolar Fluids: Theory and Application, Birkhäuser Basel (1999).
  5. [5] Eringen, A. C., Microcontinuum Field Theories II, Fluent Media, Springer, New York (2001).
  6. [6] Kelson, N. A. and Farrell, T. W., “Micropolar Flow Over a Porous Stretching Sheet with Strong Suction or Injection,” Int. Comm. Heat Mass Transfer, Vol. 28, pp. 479488 (2001). doi: 10.1016/S0735-1933(01) 00252-4
  7. [7] Bhargava, R., Kumar, L. and Takhar, H. S., “Finite Element Solution of Mixed Convection Micropolar Flow Driven by a Porous Stretching Sheet,” Int. J. Eng. Sci., Vol. 41, pp. 21612178 (2003). doi: 10.1016/S0020- 7225(03)00209-X
  8. [8] Abo-Eldahab, E. M. and El-Aziz, M. A., “Flow and Heat Transfer in a Micropolar Fluid Past a Stretching Surface Embedded in a Non-Darcian Porous Medium with Uniform Free Stream,” Appl. Math. Comput., Vol. 162, pp. 881899 (2005). doi: 10.1016/j.amc.2003. 12.129
  9. [9] Mahmoud, M. A. A., Abd-Elaty, M. M. and Waheed, S. E., “Hydromagnetic Boundary Layer Micropolar Fluid Flow Over a Stretching Surface Embedded in a Non-Darcian Porous Medium with Radiation,” Mathem. Prob. Engng., pp. 110 (2006). doi: 10.1155/ MPE/2006/39392
  10. [10] Mansour, M. A., El-Anssary, N. F. and Aly, A. M., “Effect of Chemical Reaction and Thermal Stratification on MHD Free Convective Heat and Mass Transfer Over a Vertical Stretching Surface Embedded in a Porous Media Considering Soret and Dufour Number,” Chem. Eng. J., Vol. 145, pp. 340345 (2008). doi: 10.1016/j.cej.2008.08.016
  11. [11] Beg O. A., Bakier, A. Y. and Prasad, V. R., “Numerical Study of Free Convection Magnetohydrodynamics Heat and Mass Transfer from a Stretching Surface to a Saturated Porous Medium with Soret and Dufour Effects,” Comput. Material Sci., Vol. 46, pp. 5765 (2009). doi: 10.1016/j.commatsci.2009.02.004
  12. [12] Tsai, R. and Huang, J. S., “Heat and Mass Transfer for Soret and Dufour’s Effects on Hiemenz Flow Through Porous Medium onto a Stretching Surface,” Int. J. Heat Mass Transfer, Vol. 52, pp. 23992406 (2009). doi: 10.1016/j.ijheatmasstransfer.2008.10.017
  13. [13] Reddy, M. G. and Reddy, N. B., “Soret and Dufour Effects on Steady MHD Free Convection Flow Past a Semi-Infinite Moving Plate in Porous Medium with Viscous Dissipation,” Int. J. Appl. Math and Mech., Vol. 6, No. 1, pp. 112 (2010).
  14. [14] Prasad, V. R., Vasu, B. and Beg, O. A., “Thermo-Diffusion and Diffusion-Thermo Effects on MHD Free Convection Flow Past a Vertical Porous Plate Embedded in a Non-Darcian Porous Medium,” Chem. Eng. J., Vol. 173, pp. 598606 (2011). doi: 10.1016/ j.cej.2011.08.009
  15. [15] Pal, D. and Chatterjee, S., “Mixed Convection Magnetohydrodynamic Heat and Mass Transfer Past a Stretching Surface in a Micropolar Fluid-Saturated Porous Medium under the Influence of Ohmic Heating, Soret and Dufour Effects,” Commun. Nonlinear Sci. Numer. Simulat., Vol. 16, pp. 13291346 (2011). doi: 10.1016/j.cnsns.2010.06.008
  16. [16] Srinivasacharya, D. and Reddy, C. H. R., “Mixed Convection Heat and Mass Transfer in a Micropolar Fluid with Soret and Dufour Effects,” Adv. Appl. Math. Mech., Vol. 3, No. 4, pp. 389400 (2011).
  17. [17] Ahmadi, G., “Self-Similar Solution of Incompressible Micropolar Boundary Layer Flow Over a Semi-Infinite Plate,” Int. J. Eng. Sci., Vol. 14, pp. 639646 (1976). doi: 10.1016/0020-7225(76)90006-9
  18. [18] Raptis, A., “Radiation and Free Convection Flow Through a Porous Medium,” Int. Comm. Heat Mass Transfer, Vol. 25, pp. 289295 (1998). doi: 10.1016/ S0735-1933(98)00016-5
  19. [19] Sharidan, S., Amin, N. and Pop, I., “Unsteady Boundary Layer Flow due to a Stretching Surface in a Porous Medium Using Brinkman Equation Model,” Heat and Technology, Vol. 25, No. 2, pp. 111117 (2006).
  20. [20] Cebeci, T. and Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer, Springer, New York (1988). [21] Grubka, L. J. and Bobba, K. M., “Heat Transfer Characteristics of a Continuous, Stretching Surface with Variable Temperature,” ASME J. Heat Transfer, Vol. 107, pp. 248250 (1985). doi: 10.1115/1.3247387
  21. [22] Ali, M. E., “Heat Transfer Characteristics of a Continuous Stretching Surface,” Heat Mass Transfer, Vol. 29, pp. 227234 (1994). doi: 10.1007/BF01539754
  22. [23] Nazar, R., Amin, N., Filip, D. and Pop, I., “Stagnation Point Flow of a Micropolar Fluid towards a Stretching Sheet,” Int. J. Nonlinear Mech., Vol. 39, pp. 1227 1235 (2004). doi: 10.1016/j.ijnonlinmec.2003.08.007