REFERENCES
- [1] Box, G. E. P., “Evolutionary Operation: A Method for Increasing Industrial Productivity,” Applied Statistics, Vol. 6, pp. 81101 (1957).
- [2] Fogel, L. J., Owens, A. J. and Walsh, M. J., Artificial Intelligence Through Simulated Evolution. John Wiley, New York (1966).
- [3] Corne, D., Dorigo, M. and Glover, F. (Eds), New Ideas in Optimization, McGraw-Hill International Limited, UK (1999).
- [4] Hajela, P. and Yoo, J. S., “Immune Network Modelling in Design Optimization,” New Ideas in Optimization, Editors: Corne, D., Dorigo, M. and Glover, F., McGraw-Hill International, UK (1999).
- [5] Hajela, P. and Lee, J., “Constrained Genetic Search via Schema Adaptation: An Immune Network Solution,” Structural Optimization, Vol. 12, pp. 1115 (1996).
- [6] Lee, J. and Hajela, P., “GA’s in Decomposition Based Design-Subsystem Interactions Through Immune Network Simulation,” Structural Optimization, Vol. 14, pp. 248255 (1997).
- [7] Yoo, J. and Hajela, P., “Immune Network Simulations in Multi-Criterion Design,” Structural Optimization, Vol. 18, pp. 8594 (1999).
- [8] Coello Coello, C. A. and Cortés, N. C., “Use of Emulations of the Immune System to Handle Constraints,” Evolutionary Algorithms, Intelligent Engineering Systems Through Artificial Neural Networks (ANNIE’ 2001), ASME Press, Editors: Dagli, C. H. et al., Vol. 11, pp. 141146 (2001).
- [9] Coello Coello, C. A. and Cortés, N. C., “A Parallel Implementation of an Artificial Immune System to Handle Constraints in Genetic Algorithms: Preliminary Results,” Proceedings of the Congress on Evolutionary Computation 2002, IEEE Service Center, Vol. 1, pp. 819824, Piscataway, New Jersey (2002).
- [10] Coello Coello, C. A., http://www.lania.mx/~ccoello /EMOO/EMOObib.html. (2005).
- [11] Coello Coello, C. A. and Cortés, N. C., “An Approach to Solve Multi-objective Optimization Problems Based on an Artificial Immune System,” First International Conference on Artificial Immune Systems (ICARIS’2002), Jonathan Timmis, J. and Bentley, P. J. (editors), pp. 212221, University of Kent at Canterbury, Inglaterra (2002).
- [12] Coello Coello, C. A. and Cortés, N. C., “Solving MultiObjective Optimization Problems Using an Artificial Immune System,” Technical Report EVOCINV-05- 2002, Evolutionary Computation Group at CINVESTAV, Seccion de Computacion, Departamento de Ingenieria Electrica, CINVESTAV-IPN, Mexico (2002).
- [13] Cortés, N. C. and Coello Coello, C. A., “Using Artificial Immune Systems to Solve Optimization Problems,” Barry, A. (editor), Genetic and Evolutionary Computation Conference. Workshop Program, pp. 312315, AAAI, Chicago, Illinois, USA (2003).
- [14] Luh, G.-C., Chueh, C.-H. and Liu, W.-W., “MOIAMulti-Objective Immune Algorithm,” Engineering Optimization, Vol. 35, pp. 143164 (2003).
- [15] Hajela, P. and Yoo, J., “Constraint Handling in Genetic Search Using Expression Strategies,” AIAA Journal, Vol. 34, pp. 24142420 (1996).
- [16] Shih, C. J. and Kuan, T. L., “An Immunity Based Hybrid Evolutionary Algorithm for Engineering Optimization,” Tamkang Journal of Science and Engineering - An International Journal, Vol. 9, pp. 2536 (2006).
- [17] de Castro, L. N. and Timmis, J., “An Artificial Immune Network for Multi-Modal Function Optimization,” Proceedings of IEEE Congress of Evolutionary Computation (CEC’02), Vol. 1, pp. 699674 (2002).
- [18] Rao, S. S., Engineering Optimization - Theory and Practice. 3rd ed., Wiley Eastern Limited, New York (1996).
- [19] Rao, S. S., “Multi-Objective Optimization of Fuzzy Structural Systems,” International Journal of Numerical Methods in Engineering, Vol. 24, pp. 11571171 (1987).
- [20] Shih, C. J. and Chang, C. J., “Pareto Optimization of Alternative Global Criterion Method for Fuzzy Structural Design,” Computers & Structures, Vol. 54, pp. 455460 (1995).
- [21] Hajela, P. and Shih, C. J., “Multi-Objective Optimum Design in Mixed Integer and Discrete Design Variable Problems,” AIAA Journal,Vol. 28, pp. 670675 (1990).