Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Jia-Jan Guo1 and Chii-Dong Ho This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Chemical and Materials Engineering, Tamkang University, Tamsui, Taiwan 251, R.O.C.


 

Received: September 14, 2007
Accepted: April 28, 2008
Publication Date: December 1, 2008

Download Citation: ||https://doi.org/10.6180/jase.2008.11.4.03  


ABSTRACT


The modeling equations for the concentration distribution and extraction rate in a concentric circular membrane extractor module under countercurrent-flow with various barrier locations were derived theoretically with the use of the mass balance on each subchannel. The analytical solution is obtained by using the separated variable method with an orthogonal expansion technique extended in power series. The extraction rate and mass transfer efficiency in this study are represented graphically with the volumetric flow rate and permeable-barrier location as parameters. The improvements of extraction rate and mass transfer efficiency were achieved by the suitable adjustment of the barrier location and under the countercurrent-flow operation. The influences of operation and design parameters on the extraction rate and mass-transfer efficiency enhancement are also discussed.


Keywords: Membrane Extraction, Orthogonal Expansion Techniques, Mass-Transfer Graetz Number, Mass Transfer Efficiency


REFERENCES


  1. [1] Mulder, M., (Ed.), Basic Principles of Membrane Technology, Kluwer Academic Publishers, London (1997).
  2. [2] Vajda, M., Havalda, I. and Macek, R., Membranebased solvent extraction and stripping of zinc in a hollow-fibre contactor operating in a circulating mode, Desalination, Vol. 163, p. 19 (2004).
  3. [3] Yeh, H. M., Chen, C. H. and Yueh, T. Y., Influence of channel-width ratio on solvent extraction through a double-pass parallel-plate membrane module, J. Membrane Sci., Vol. 230, p. 13 (2004).
  4. [4] Ortiz, I., Bringas, E., San Román, M. F. and Urtiaga, A. M., Selective separation of zinc and iron from spent pickling solutions by membrane-based solvent extraction: Process viability, Sep. Sci. Tech., Vol. 39, p. 2441 (2004).
  5. [5] Kumar, P. S., Hogendoorn, J. A., Feron, P. H. M. and Versteeg, G. F., New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors, Chem. Eng. Sci., Vol. 57, p. 1639 (2002).
  6. [6] Wang, W. P., Lin, S. T. and Ho, C. D., An analytical study of laminar co-current flow gas absorption through a parallel-plate gas-liquid membrane contactor, J. Membr. Sci., Vol. 278, p. 181 (2006).
  7. [7] Lee, H. K., Jo, H. D., Choi, W. K., Park, H. H., Lim, C. W. and Lee, Y. T., Absorption of SO2 in hollow fiber membrane contactors using various aqueous absorbents, Desalination, Vol. 200, p. 604 (2006).
  8. [8] Gnusin, N. P., Berezina, N. P., Kononenko, N. A. and Dyomina, O. A., Transport structural parameters to characterize ion exchange membranes, J. Membr. Sci., Vol. 243, p. 301 (2004).
  9. [9] Tanaka, Y., Concentration polarization in ion-exchange membrane electrodialysis: The events arising in an unforced flowing solution in a desalting cell, J. Membrane Sci., Vol. 244, p. 1 (2004).
  10. [10] Ugrozov, V. V., Elkina, I. B., Nikulin, V. N. and Kataeva, L. I., Theoretical and experimental research of liquid-gap membrane distillation process in membrane module, Desalination, Vol. 157, p. 325 (2003).
  11. [11] Gabelman, A. and Hwang, S. T., Hollow fiber membrane contactors, J. Membrane Sci., Vol. 159, p. 61 (1999).
  12. [12] Prasad, R. and Sirkar, K. K., Hollow fibers solvent extraction: performances and design, J. Membrane Sci., Vol. 50, p. 153 (1999).
  13. [13] Yeh, H. M. and Chen, C. H., Recycle effect on solvent extraction through concurrent-flow parallel-plate membrane modules, J. Membrane Sci., Vol. 190, p. 35 (2001).
  14. [14] Prasad, R. and K. K., Dispersion-free solvent extraction with microporous hollow-fibers modules, AIChE J., Vol. 34, p. 177 (1988).
  15. [15] Yun, C., Prasad, R. and Sirkar, K. K., Membrane solvent extraction removal of priority organic pollutants from aqueous waste stream, Ind. Eng. Chem. Res., Vol. 31, p. 1709 (1992).
  16. [16] Juang, R. S., Chen, J. D. and Huan, H. C., Dispersionfree membrane extraction: case studies of metal ion and organic acid extraction, J. Membrane Sci., Vol. 165, p. 59 (2000).
  17. [17] Juang, R. S. and Huang, H. C., Non-dispersive extraction separation of metals using hydrophilic microporous and cation exchange membranes, J. Membrane Sci., Vol. 156, p. 179 (1999).
  18. [18] Ding, H. and Cussler, E. L., Fractional extraction with hollow fibers with hydrogel-filled wall, AIChE J., Vol. 37, p. 855 (1991).
  19. [19] Prasad, R. and Sirkar, K. K., Microporous membrane solvent extraction, Sep. Sci. Tech., Vol. 22, p. 619 (1987).
  20. [20] Prasad, R. and Sirkar, K. K., Solvent extraction with microporous hydrophilic and composite membrane, AIChE J., Vol. 33, p. 1057 (1987).
  21. [21] Ho, C. D., Yeh, H. M. and Sheu, W. S., An analytical study of heat and mass transfer through a parallel-plate channel with recycle, Int. J. Heat Mass Transfer, Vol. 41, p. 2589 (1998).
  22. [22] Ho, C. D., Improvement in performance of doubleflow laminar countercurrent mass exchangers, J. Chem. Eng. Jpn., Vol. 33, p. 545 (2000).
  23. [23] Yeh, H. M. and Huang, C. M., Solvent extraction in multupass parallel-flow mass exchangers of microporous hollow-fiber modules, J. Membrane Sci., Vol. 103, p. 135 (1995).
  24. [24] Yeh, H. M. and Chen, Y. K., Correction-factor analysis of membrane extraction in flat-plate modules, J. Chin. Inst. Chem. Engrs., Vol. 32, p. 453 (2002).
  25. [25] Nunge, R. J., Gill, W. N., Analysis of heat transfer in some countercurrent flows. Int. J. Heat Mass Transfer, Vol. 8, p. 873 (1965).
  26. [26] Nunge, R. J., Gill, W. N., An analytical study of laminar counterflow double-pipe heat exchangers, AIChE J., Vol. 12, p. 279 (1966).
  27. [27] Ho, C. D., Yeh, H. M. and Chiang, S. C., A study of mass transfer efficiency in a parallel-plate channel with external refluxes,Chem. Eng. J., Vol. 85, p. 207 (2002).
  28. [28] Ho, C. D. and Guo, J. J., An analytical study of separation efficiency on the enrichment of heavy water in double-flow thermal-diffusion columns with flow-rate fraction variations, Chem. Eng. Commun., Vol. 192, p. 424 (2005).


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.