Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Tung-Wen Cheng This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Ho-Ming Yeh1

1Department of Chemical and Materials Engineering, Tamkang University, Tamsui, Taiwan 251, R.O.C.


 

Received: April 26, 2005
Accepted: May 20, 2006
Publication Date: September 1, 2008

Download Citation: ||https://doi.org/10.6180/jase.2008.11.3.02  


ABSTRACT


The predicting equations for the declines of transmembrane pressure and permeate flux in hollow-fiber ultrafilters were derived from the complete momentum balance with the consideration of the rate of momentum transfer by convection, instead of simply applying Hagen-Poiseuille theory without the consideration of the effect of permeation on fluid flow, resulting in improved prediction. The assumption of laminar flow in the fiber tubes was examined.


Keywords: Ultrafiltration, Hollow Fiber, Momentum Balance, Permeate Flux


REFERENCES


  1. [1] Poter M. C., Membrane Filtration, Handbook of Separation Techniques for Chemical Engineers, Schweitzer, P. A., ed., McGraw-Hill New York, Sec. 2.1 (1979).
  2. [2] Cheryan, M., Ultrafiltration Handbook, Technomic Publishing, Lancaster, Pennsylvania, Sec. 8. (1986)
  3. [3] Blatt, W. F., Dravid, A., Michales, A. S. and Nelsen L., “Solute Polarization and Cake Formation in Membrane Ultrafiltration: Causes, Consequences and Control Technique,” Membrane Science and Technology, Filnn, J. E., ed., Plenum Press, New York, p. 47 (1970).
  4. [4] Poter, M. C., “Concentration Polarization with Membrane Ultrafiltration,” Ind. Eng. Chem. Proc. Res. Dev., Vol. 11, p. 234 (1972).
  5. [5] Grieves, R. B., Bhattacharyya, D., Schomp, W. G. and Bewley, J. L., “Membrane Ultrafiltration of Nonionic Surfactant,” AIChE J., Vol. 19, p. 766 (1973).
  6. [6] Shen, J. J. S. and Probstein, R. F., “On the Prediction of Limiting Flux in Laminar Ultrafiltration of Macromolecular Solution,” Ind. Eng. Chem. Fundam., Vol. 16, p. 459 (1977).
  7. [7] Nokao, S., Nomura, T. and Kimura, S., “Characteristics of Macromolecular Gel Layer Formed on Ultrafiltration Tubular Membrane,” AIChE J., Vol. 25, p. 615 (1979).
  8. [8] Fane, A. G., Fell, C. J. D. and Waters, A. G., “The Relationship between Membrane Surface Pore Characteristics and Flux Ultrafiltration Membranes,” J. Membr. Sci., Vol. 9, p. 245 (1981).
  9. [9] Fane, A. G., “Ultrafiltration of Suspensions,” J. Membr. Sci., Vol. 20, p. 249 (1984).
  10. [10] Wijmans, J. G., Nakao, S. and Smolders C. A., “Flux Limitation in Ultrafiltration: Osmotic Pressure Model and Gel Layer Model,” J. Membr. Sci., Vol. 20, p. 115 (1984).
  11. [11] Kozinski, A. A. and Lighfoot, E. N., “Protein Ultrafiltration: A General Example of Boundary Layer Filtration,” AIChE J., Vol. 19, p. 1030 (1972).
  12. [12] Leung, W., and Probstein, R. F., “Low Polarization in Laminar Ultrafiltration of Macromolecular Solutions,” Ind. Eng. Chem. Fundam., Vol. 18, p. 274 (1979).
  13. [13] Wendt, R. P., Klein, E., Holland, F. F. and Eberle, K. E., “Hollow Fiber Ultrafiltration of Calf Serum and Albumin in the Pregel Uniform-Wall-Flux Region,” Chem. Eng. Commun., Vol. 8, p. 251 (1981).
  14. [14] Nakao, S. and Kimura, S., “Models of Membrane Transport Phenomena and their Applications for Ultrafiltration Data,” J. Chem. Eng. Jpn., Vol. 15, p. 200 (1982).
  15. [15] Kleinstreuer, C. and Paller, M. S., “Laminar Dilute Suspension Flows in Plate-and-Frame Ultrafiltration Units,” AIChE J., Vol. 29, p. 529 (1983).
  16. [16] Clifton, M. J., Abidine, N., Aptel, P. and Sanchez, V., “Growth of the Polarization Layer in Ultrafiltration with Hollow-Fiber Membranes,” J. Membr. Sci., Vol. 21, p. 233 (1984).
  17. [17] Ma, R. P., Gooding, C. H. and Alexander, W. K., “A Dynamic Model for Low-Pressure, Hollow Fiber Ultrafiltration,” AIChE J., Vol. 31, p. 1728 (1985).
  18. [18] Nabetani, H., Nakajima, M., Watanabe, A., Nakao, S. and Kumura, S., “Effects of Osmotic Pressure and Adsorption on Ultrafiltration of Ovalbumin,” AIChE J., Vol. 36, p. 907 (1990).
  19. [19] Chiang, B. H. and Cheryan, M., “Ultrafiltration on Skin Milk in Hollow Fibers,” J. Food Sci., Vol. 51, p. 340 (1986).
  20. [20] Assadi, M. and White, D. A., “A Mode for Determining the Steady-State Flux of Inorganic Microfiltration Membrane,” Chem. Eng. J., Vol. 48, p. 11 (1992).
  21. [21] Yeh, H. M. and Cheng, T. W., “Resistance-in-Series of Membrane Ultrafiltration in Hollow Fiber of Tubeand-Shell Arrangement,” Sep. Sci. Technol., Vol. 28, p. 1341 (1993).
  22. [22] Yeh, H. M. and Wu, H. H., “Membrane Ultrafiltration in Combined Hollow-Fiber Module Systems,” J. Membr. Sci., Vol. 124, p. 93 (1997).
  23. [23] Yeh, H. M. and Tsai, J. W., “Membrane Ultrafiltration in Multipass Hollow-Fiber Modules,” J. Membr. Sci., Vol. 142, p. 61 (1998).
  24. [24] Yeh, H. M., Chen, H. Y. and Chen, K. T., “Membrane Ultrafiltration in Tubular Module with a Steel Rod Inserted Concentrically for Improved Performance,” J. Membr. Sci., Vol. 168, p. 121 (2000).
  25. [25] Yeh, H. M. and Chen, K. T., “Improvement of Ultrafiltration Performance in Tubular Membranes using a Twisted Wired-Rod Assembly,” J. Membr. Sci., Vol. 178, p. 43 (2000).
  26. [26] Yeh, H. M., Dong, J. F., Hsieh, M. J. and Yang, C. C., “Prediction of Permeate Flux for Ultrafiltraction in a Wire-Rod Tubular-Membrane Modules,” J. Membr. Sci., Vol. 209, p. 19 (2002).
  27. [27] Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport Phenomena, Wiley, New York, p. 44 (1971).
  28. [28] Dong, J. F., “Permeate Flux Analysis for Membrane Ultrafiltration,” M. S. thesis, Tamkang University, Tamsui, Taiwan (2001).
  29. [29] Cheng, T. W., “A Study on the Hollow-Fiber Membrane Ultrafiltration,” Ph.D. thesis, National Taiwan University, Taipei, Taiwan, p. 146 (1992).