Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Fei XiaoThis email address is being protected from spambots. You need JavaScript enabled to view it.

Zhengzhou Medical College, Zhengzhou, 452385 China


 

Received: October 23, 2024
Accepted: December 1, 2024
Publication Date: December 28, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202509_28(9).0011  


Behavior recognition technology has a wide range of applications, but only refers to the field of security applications, due to the intrusion of anti-terrorism issues, governments, security departments, enterprise organizations and institutions around the world have increased security vigilance. The traditional behavior recognition technologies cannot effectively recognize the face in all directions, because of the face occlusion, incomplete feature extraction, noise and other factors. Therefore, this paper proposes a novel student behavior recognition combined with multi-view learning and mask RCNN (Region-based convolutional neural network. In order to improve the accuracy of occlusion behavior recognition, occlusion segmentation network is used to extract occlusion information, and mask generator generates mask according to occlusion information to hide the damaged features. This paper also proposes a channel-space attention fusion network for feature extraction. The feature norm is incorporated into the loss function as an index of image quality. The experimental results on public data sets show that the proposed method can effectively reduce the interference of unrecognized images and improve the performance of low quality behavior recognition.


Keywords: Behavior recognition; Mask RCNN; Attention feature fusion; Feature extraction


  1. [1] S. Yin, H. Li, L. Teng, A. A. Laghari, and V. V. Estrela, (2024) “Attribute-based multiparty searchable encryption model for privacy protection of text data" Multimedia Tools and Applications 83(15): 45881–45902. DOI: 10.1007/s11042-023-16818-4.
  2. [2] K. Chen, T. Yi, and Q. Lv, (2021) “Lightqnet: Lightweight deep face quality assessment for risk controlled face recognition" IEEE Signal Processing Letters 28: 1878–1882. DOI: 10.1109/LSP.2021.3109781.
  3. [3] J.M.Pimentel,R.C.Moioli, M.F.DeAraujo,andP.A. Vargas, (2023) “An Integrated Neurorobotics Model of the Cerebellar-Basal Ganglia Circuitry." International Journal of Neural Systems 33(11): DOI: 10.1142/S0129065723500594.
  4. [4] M. Besnassi, N. Neggaz, and A. Benyettou, (2020) “Face detection based on evolutionary Haar filter" Pat tern Analysis and Applications 23: 309–330. DOI: 10.1007/s10044-019-00784-5.
  5. [5] A. Singha, M. K. Bhowmik, and D. Bhattacherjee, (2020) “Akin-based Orthogonal Space (AOS): a subspace learning method for face recognition" Multimedia Tools and Applications 79(47): 35069–35091. DOI: 10.1007/s11042-020-08892-9.
  6. [6] Y. Feng, F. Wu, Q. Huang, X.-Y. Jing, Y. Ji, J. Yu, F. Chen, and L. Han. “Cross-modality multi-task deep metric learning for sketch face recognition”. In: 2019 Chinese Automation Congress (CAC). IEEE. 2019, 2277 2281. DOI: 10.1109/CAC48633.2019.8996397.
  7. [7] Y.Taigman,M.Yang,M.Ranzato,andL.Wolf.“Deep face: Closing the gap to human-level performance in face verification”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE. 2014, 1701–1708. DOI: 10.1109/CVPR.2014.220.
  8. [8] X. Wang and W. Zhang, (2021) “Anti-occlusion face recognition algorithm based on a deep convolutional neu ral network" Computers & Electrical Engineering 96: 107461. DOI: 10.1016/j.compeleceng.2021.107461.
  9. [9] F. Schroff, D. Kalenichenko, and J. Philbin. “Facenet: Aunifiedembeddingforfacerecognition andcluster ing”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, 2015, 815–823. DOI: 10.1109/CVPR.2015.7298682.
  10. [10] M.Cheng, J. Bai, L. Li, Q. Chen, X. Zhou, H. Zhang, and P. Zhang. “Tiny-RetinaNet: a one-stage detec tor for real-time object detection”. In: Eleventh in ternational conference on graphics and image process ing (ICGIP 2019). 11373. SPIE. 2020, 195–202. DOI: 10.1117/12.2557264.
  11. [11] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, (2019) “Retinaface: Single-stage dense face lo calisation in the wild" arXiv preprint arXiv:1905.00641:
  12. [12] J.-X. Tong, H. Li, and S.-L. Yin, (2020) “Research on face recognition method based on deep neural network" International Journal of Electronics and Informa tion Engineering 12(4): 182–188. DOI: 10.6636/IJEIE. 202012_12(4).05).
  13. [13] H. Zhang, J. Li, Y. Huang, and L. Zhang, (2013) “A nonlocal weighted joint sparse representation classifica tion method for hyperspectral imagery" IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(6): 2056–2065. DOI: 10.1109/ JSTARS.2013.2264720.
  14. [14] A.Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, (2018) “Generative adversarial networks: An overview" IEEE signal pro cessing magazine 35(1): 53–65. DOI: 10.1109/MSP.2017.2765202.
  15. [15] H. Fan, H.-M. Hu, S. Liu, W. Lu, and S. Pu, (2020) “Correlation graph convolutional network for pedestrian attribute recognition" IEEE Transactions on Multime dia 24: 49–60. DOI: 10.1109/TMM.2020.3045286.
  16. [16] M.Zhu, D. Shi, M. Zheng, and M. Sadiq. “Robust fa cial landmark detection via occlusion-adaptive deep networks”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. IEEE, 2019, 3486–3496. DOI: 10.1109/CVPR.2019.00360.
  17. [17] X. Shao, Q. Wang, W. Yang, Y. Chen, Y. Xie, Y. Shen, and Z. Wang, (2021) “Multi-scale feature pyramid net work: A heavily occluded pedestrian detection network based on ResNet" Sensors 21(5): 1820. DOI: 10.3390/s21051820.
  18. [18] X. Wu and L. Zhao, (2019) “Study on iris segmenta tion algorithm based on dense U-Net" IEEE Access 7: 123959–123968. DOI: 10.1109/ACCESS.2019.2938809.
  19. [19] Y.Qu,R.K.Baghbaderani,H.Qi,andC.Kwan,(2020) “Unsupervised pansharpening based on self-attention mechanism" IEEE Transactions on Geoscience and Remote Sensing 59(4): 3192–3208. DOI: 10.1109/TGRS.2020.3009207.
  20. [20] A. Boragule, H. Akram, J. Kim, and M. Jeon, (2022) “Learning to resolve uncertainties for large-scale face recog nition" Pattern Recognition Letters 160: 58–65. DOI: 10.1016/j.patrec.2022.06.004.
  21. [21] F. Boutros, N. Damer, M. Fang, F. Kirchbuchner, and A. Kuijper. “MixFaceNets: Extremely Efficient Face Recognition Networks”. In: 2021 IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2021. DOI: 10.1109/IJCB52358.2021.9484374.
  22. [22] F. Ye, M. Ding, E. Gong, X. Zhao, and L. Hang. “Tiny face detection based on deep learning”. In: 2019 14th IEEE Conference on Industrial Electronics and Appli cations (ICIEA). IEEE. 2019, 407–412. DOI: 10.1109/ICIEA.2019.8834282.
  23. [23] M. Kim, A. K. Jain, and X. Liu. “Adaface: Quality adaptive margin for face recognition”. In: Proceed ings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, 18750–18759. DOI: 10.1109/CVPR52688.2022.01819.
  24. [24] F. Boutros, N. Damer, F. Kirchbuchner, and A. Kui jper. “Elasticface: Elastic margin loss for deep face recognition”. In: Proceedings of the IEEE/CVF confer ence on computer vision and pattern recognition. 2022, 1578–1587. DOI: 10.1109/CVPRW56347.2022.00164.
  25. [25] T. Gong, X. Liu, and H. Yuan, (2022) “Face Recogni tion Method based on Feature Fusion and Convolutional Neural Network" International Core Journal of Engi neering 8(5): 526–537. DOI: 10.6919/ICJE.202205_8(5).0068.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.