- [1] E. Momeni, R. Nazir, D. J. Armaghani, and H. Maizir, (2015) “Application of artificial neural network for predicting shaft and tip resistances of concrete piles" Earth Sciences Research Journal 19: 85–93. DOI: 10.15446/esrj.v19n1.38712.
- [2] E. Momeni, H. Maizir, N. Gofar, and R. Nazir, (2013) “Comparative study on prediction of axial bearing capacity of driven piles in granular materials" Jurnal Teknologi 61: 15–20. DOI: 10.11113/jt.v61.1777.
- [3] F. Milad, T. Kamal, H. Nader, and O. E. Erman, (2015) “New method for predicting the ultimate bearing capacity of driven piles by using Flap number" KSCE Journal of Civil Engineering 19: 611–620. DOI: 10.1007/s12205-013-0315-z.
- [4] R. Nazir, E. Momeni, N. G. Nurly, and H. Maizir, (2013) “Numerical modeling of skin resistance distribution with depth in piles" Electron J Geotech Eng 18: 2477–2488.
- [5] E. Momeni, M. B. Dowlatshahi, F. Omidinasab, H. Maizir, and D. J. Armaghani, (2020) “Gaussian process regression technique to estimate the pile bearing capacity" Arabian Journal for Science and Engineering 45: 8255–8267. DOI: 10.1007/s13369-020-04683-4.
- [6] I.-M. Lee and J.-H. Lee, (1996) “Prediction of pile bearing capacity using artificial neural networks" Computers and geotechnics 18: 189–200. DOI: 10.1016/0266- 352X(95)00027-8.
- [7] W. F. Che, T. M. H. Lok, S. C. Tam, and H. NovaisFerreira, (2003) “Axial capacity prediction for driven piles at Macao using artificial neural network":
- [8] H. Liu, T. J. Li, and Y. F. Zhang, (1997) “The application of artificial neural networks in estimating the pile bearing capacity":
- [9] J.-K. Hu, (2022) “Estimation of pile settlement applying hybrid ALO-MLP and GOA-MLP approaches" Journal of Applied Science and Engineering 25: 1239–1255. DOI: 10.6180/jase.202212_25(6).0019.
- [10] Y. Zhang, (2022) “Pile settlement prediction applying hybrid ALO-SVR and BBO-SVR approaches" Multiscale and Multidisciplinary Modeling, Experiments and Design 5: 243–253.
- [11] M. Shanbeh, D. Najafzadeh, and S. A. H. Ravandi, (2012) “Predicting pull-out force of loop pile of woven terry fabrics using artificial neural network algorithm" Industria Textila 63: 37–41.
- [12] A. M. Hanna, G. Morcous, and M. Helmy, (2004) “Efficiency of pile groups installed in cohesionless soil using artificial neural networks" Canadian Geotechnical Journal 41: 1241–1249.
- [13] A. T. C. Goh, (1996) “Pile driving records reanalyzed using neural networks" Journal of Geotechnical Engineering 122: 492–495.
- [14] C. I. Teh, K. S. Wong, A. T. C. Goh, and S. Jaritngam, (1997) “Prediction of pile capacity using neural networks" Journal of computing in civil engineering 11: 129–138.
- [15] A. A. Jebur, W. Atherton, R. M. A. Khaddar, and E. Loffill, (2021) “Artificial neural network (ANN) approach for modelling of pile settlement of open-ended steel piles subjected to compression load" European Journal of Environmental and Civil Engineering 25: 429– 451. DOI: 10.1080/19648189.2018.1531269.
- [16] D. J. Armaghani, P. G. Asteris, S. A. Fatemi, M. Hasanipanah, R. Tarinejad, A. S. A. Rashid, and V. V. Huynh, (2020) “On the use of neuro-swarm system to forecast the pile settlement" Applied Sciences 10: 1904.
- [17] H. Moayedi, A. Osouli, D. T. Bui, L. K. Foong, H. Nguyen, and B. Kalantar, (2019) “Two novel neuralevolutionary predictivetechniques of dragonfly algorithm (DA) andbiogeography-based optimization (BBO) forlandslide susceptibility analysis":
- [18] A. Ismail and D.-S. Jeng, (2011) “Modelling load–settlement behaviour of piles using high-order neural network (HON-PILE model)" Engineering Applications of Artificial Intelligence 24: 813–821.
- [19] A. K. Bansal, R. Kumar, and R. A. Gupta, (2013) “Economic analysis and power management of a small autonomous hybrid power system (SAHPS) using biogeography based optimization (BBO) algorithm" IEEE Transactions on Smart Grid 4: 638–648.
- [20] Q. Niu, L. Zhang, and K. Li, (2014) “A biogeographybased optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells" Energy conversion and management 86: 1173–1185.
- [21] M. Ahmadlou, M. Karimi, S. Alizadeh, A. Shirzadi, D. Parvinnejhad, H. Shahabi, and M. Panahi, (2019) “Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA)" Geocarto International 34: 1252–1272.
- [22] L. Abualigah, K. H. Almotairi, M. A. Elaziz, M. Shehab, and M. Altalhi, (2022) “Enhanced Flow Direction Arithmetic Optimization Algorithm for mathematical optimization problems with applications of data clustering" Engineering Analysis with Boundary Elements 138: 13–29.
- [23] N. Fehn, W. A. Wall, and M. Kronbichler, (2019) “Modern discontinuous Galerkin methods for the simulation of transitional and turbulent flows in biomedical engineering: a comprehensive LES study of the FDA benchmark nozzle model" International Journal for Numerical Methods in Biomedical Engineering 35: e3228.
- [24] K. Jain, (2020) “Efficacy of the FDA nozzle benchmark and the lattice Boltzmann method for the analysis of biomedical flows in transitional regime" Medical & Biological Engineering & Computing 58: 1817–1830. DOI: 10.1007/s11517-020-02188-8.
- [25] H. Bendu, B. Deepak, and S. Murugan, (2016) “Application of GRNN for the prediction of performance and exhaust emissions in HCCI engine using ethanol" Energy conversion and management 122: 165–173.
- [26] V. K. Alilou and F. Yaghmaee, (2015) “Application of GRNN neural network in non-texture image inpainting and restoration" Pattern Recognition Letters 62: 24– 31. DOI: 10.1016/j.patrec.2015.04.020.
- [27] A. Zendehboudi and A. Tatar, (2017) “Utilization of the RBF network to model the nucleate pool boiling heat transfer properties of refrigerant-oil mixtures with nanoparticles" Journal of Molecular Liquids 247: 304–312.
- [28] M. A. Shahin, H. R. Maier, and M. B. Jaksa, (2002) “Predicting settlement of shallow foundations using neural networks" Journal of geotechnical and geoenvironmental engineering 128: 785–793. DOI: 10.1061/(ASCE)1090-0241(2002)128:9(785).
- [29] A. W. Hatheway, (2009) “The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974–2006":
- [30] H. Karami, M. V. Anaraki, S. Farzin, and S. Mirjalili, (2021) “Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems" Computers & Industrial Engineering 156: 107224. DOI: 10.1016/j.cie.2021.107224.
- [31] D. Simon, (2008) “Biogeography-based optimization" IEEE transactions on evolutionary computation 12: 702–713.
- [32] R. Rarick, D. Simon, F. E. Villaseca, and B. Vyakaranam. “Biogeography-based optimization and the solution of the power flow problem”. In: IEEE, 2009, 1003–1008. DOI: 10.1109/ICSMC.2009.5346046.
- [33] D. E. Goldberg, (2000) “The design of innovation: Lessons from genetic algorithms, lessons for the real world" Technological Forecasting and Social Change 64: 7–12. DOI: 10.1016/s0040-1625(99)00079-7.
- [34] W. Sun, D. Liu, J. Wen, and Z. Wu, (2017) “Modeling of MEMS gyroscope random errors based on grey model and RBF neural network" J. Navig. Position 5: 9–13.
- [35] S. Seshagiri and H. K. Khalil, (2000) “Output feedback control of nonlinear systems using RBF neural networks" IEEE Transactions on Neural Networks 11: 69–79.
- [36] G. Pazouki, E. M. Golafshani, and A. Behnood, (2022) “Predicting the compressive strength of self-compacting concrete containing Class F fly ash using metaheuristic radial basis function neural network" Structural Concrete 23: 1191–1213.