Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Balaji. V and Anthony Xavior. MThis email address is being protected from spambots. You need JavaScript enabled to view it.

School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India


 

Received: October 3, 2023
Accepted: January 4, 2024
Publication Date: February 12, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202411_27(11).0012  


High entropy alloy coating (HEACs) can be applied on metal, composite, and ceramics, including carbides and nitrides. HEACs are adopted in the automobile industries, particularly fuel injection systems, fuel filters, muffler surfaces, and aerospace sectors, including engine assemblies, landing gears, turbine blades, and rocket nozzles. As a matter of fact, the purpose of the coating is to minimize the wear rate, coefficient of friction, corrosion, diffusion, radiation rate, and increased resistance to impact. This review aims to study the performance of HEAs in comparison with the coating applied using conventional materials. Further, the influence of the fabrication methods and the parametric levels adopted on the implementation of the coatings will be presented. The performance of coating depends on the coating techniques, variations in the process parameters, and the coating thickness. Performance indicators (outcome) include the quantifiable parameters such as surface roughness, surface hardness, adhesive strength, surface energy, wear rate, and resistance to corrosion. A comprehensive review of the coating materials, techniques, and the process parameters will be presented in this review paper, along with the influence of all these aspects on the performance indicators. The suitability of HEAs coating on special applications will be addressed based on the HEAs unique properties.


Keywords: HEAs coating, Coating techniques, Coating performance, Corrosion


  1. [1] M.-h. Tsai, J.-w. Yeh, M.-h. Tsai, and J.-w. Yeh, (2014) “High-Entropy Alloys :A Critical Review High-Entropy Alloys : A Critical Review" Materials Research Letters 3831: 107–123. DOI: https: //doi.org/10.1080/21663831.2014.912690
  2. [2] B.-r. Ke, Y.-c. Sun, Y. Zhang, W.-r. Wang, W.-m. Wang, P.-y. Ma, W. Ji, and Z.-y. Fu, (2021) “Powder metallurgy of high-entropy alloys and related composites : A short review" International Journal of Minerals , Metallurgy and Materials 28: 931. DOI: https: //doi.org/10.1007/s12613-020-2221-y
  3. [3] E. P. George, W. A. Curtin, and C. C. Tasan, (2020) “High entropy alloys: A focused review of mechanical properties and deformation mechanisms" Acta Materialia 188: 435–474. DOI: 10.1016/j.actamat.2019.12.015.
  4. [4] J. Cheng, X. Gan, S. Chen, Y. Lai, H. Xiong, and K. Zhou, (2019) “Properties and microstructure of copper/nickel-iron-coated graphite composites prepared by electroless plating and spark plasma sintering" Powder Technology 343: 705–713. DOI: 10.1016/j.powtec.2018.11.057.
  5. [5] R. K. Duchaniya, U. Pandel, and P. Rao, (2021) “Coatings based on high entropy alloys : An overview" Materials Today: Proceedings 44: 4467–4473. DOI: 10.1016/j.matpr.2020.10.720.
  6. [6] C. Ni, Y. Shi, J. Liu, and G. Huang, (2018) “Characterization of Al0.5FeCu0.7NiCoCr high entropy alloy coating on aluminum alloy by laser cladding" Optics and Laser Technology 105: 257–263. DOI: 10.1016/j.optlastec.2018.01.058.
  7. [7] A. Kumar, A. Singh, and A. Suhane, (2022) “Mechanically alloyed high entropy alloys: existing challenges and opportunities" Journal of Materials Research and Technology 17: 2431–2456. DOI: https: //doi.org/10.1016/j.jmrt.2022.01.141.
  8. [8] M. Naghiyan, R. Shoja-razavi, H. Allah, and H. Jamali, (2018) “Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods" Surface & Coatings Technology 353: 25–31. DOI: 10.1016/j.surfcoat.2018.08.061.
  9. [9] L. Zhou, G. Ma, H. Zhao, H. Mou, J. Xu, W. Wang, Z. Xing, Y. Li, W. Guo, and H. Wang, (2024) “Research status and prospect of extreme high-speed laser cladding technology" Optics and Laser Technology 168: 109800. DOI: 10.1016/j.optlastec.2023.109800.
  10. [10] A. A. Siddiqui and A. K. Dubey, (2021) “Recent trends in laser cladding and surface alloying" Optics and Laser Technology 134: 106619. DOI: 10.1016/j.optlastec.2020.106619.
  11. [11] Y. He, J. Zhang, H. Zhang, and G. Song, (2017) “Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High Entropy Alloy Coating by Laser Cladding" Coatings 7: DOI: 10.3390/coatings7010007.
  12. [12] Y. Li, H. Liang, Q. Nie, Z. Qi, D. Deng, and H. Jiang, (2020) “Microstructures and Wear Resistance of CoCrFeNi 2 V 0.5 Ti High Entropy Alloy Coating Prepared by Laser Cladding" Crystals 10: 352. DOI: 10.3390/cryst10050352.
  13. [13] P. Chakraborty, S. Kumar, and R. Tewari, (2022) “Effect of Laser re-melting on the microstructure of High Entropy Alloys" Materials Letters 324: 132669. DOI: 10.1016/j.matlet.2022.132669.
  14. [14] M. Kafali, K. Mert, A. Erdogan, S. Emre, and K. Icin, (2023) “Wear , corrosion and oxidation characteristics of consolidated and laser remelted high entropy alloys manufactured via powder metallurgy" Surface & Coatings Technology 467: 129704. DOI: 10.1016/j.surfcoat.2023.129704.
  15. [15] C. Pauzon, E. Hryha, P. Forêt, and L. Nyborg, (2019) “Effect of argon and nitrogen atmospheres on the properties of stainless steel 316 L parts produced by laser-powder bed fusion" Materials and Desigh 179: 107873. DOI: 10.1016/j.matdes.2019.107873.
  16. [16] M. Gopinath, P. Thota, and A. K. Nath, (2019) “Role of molten pool thermo cycle in laser surface alloying of AISI 1020 steel with in-situ synthesized TiN" Surface & Coatings Technology 362: 150–166. DOI: 10.1016/j.surfcoat.2019.01.104.
  17. [17] Q. Qiao, V. A. M. Cristino, L. M. Tam, and C. T. Kwok, (2023) Surface & Coatings Technology 458: 129357. DOI: 10.1016/j.surfcoat.2023.129357.
  18. [18] P. F. Jiang, C. H. Zhang, S. Zhang, J. B. Zhang, J. Chen, and Y. Liu, (2020) “Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying" Materials Chemistry and Physics 255: 123571. DOI: 10.1016/j.matchemphys.2020.123571.
  19. [19] Z. Cai, X. Cui, G. Jin, Z. Liu, Y. Li, and M. Dong, (2017) “TEM observation on phase separation and interfaces of laser surface alloyed high-entropy alloy coating" Micron 103: 84–89. DOI: 10.1016/j.micron.2017.10.001.
  20. [20] S. Zhang, C. L. Wu, J. Z. Yi, and C. H. Zhang, (2015) “Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying" Surface & Coatings Technology 262: 64–69. DOI: 10.1016/j.surfcoat.2014.12.013.
  21. [21] F. Y. Shu, L. Wu, H. Y. Zhao, S. H. Sui, L. Zhou, J. Zhang, W. X. He, P. He, and B. S. Xu, (2018) “Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating" Materials Letters 211: 235–238. DOI: 10.1016/j.matlet.2017.09.056.
  22. [22] F. Shu, B. Yang, S. Dong, H. Zhao, B. Xu, F. Xu, B. Liu, P. He, and J. Feng, (2018) Applied Surface Science 450: 538–544. DOI: 10.1016/j.apsusc.2018.03.128.
  23. [23] X. Li, Y. Feng, B. Liu, D. Yi, X. Yang, W. Zhang, G. Chen, Y. Liu, and P. Bai, (2019) “In fl uence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding" Journal of Alloys and Compounds 788: 485–494. DOI: 10.1016/j.jallcom.2019.02.223.
  24. [24] C. Ni, Y. Shi, J. Liu, and G. Huang, (2018) Optics and Laser Technology 105: 257–263. DOI: 10.1016/j.optlastec.2018.01.058.
  25. [25] H. Zhang, Y. Pan, Y. He, and H. Jiao, (2011) “Microstructure and properties of 6FeNiCoSiCrAlTi highentropy alloy coating prepared by laser cladding" Applied Surface Science 257: 2259–2263. DOI: 10.1016/j.apsusc.2010.09.084.
  26. [26] S. Zhang, C. L. Wu, J. Z. Yi, and C. H. Zhang, (2015) “Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying" Surface & Coatings Technology 262: 64–69. DOI: 10.1016/j.surfcoat.2014.12.013.
  27. [27] S. Zhang, C. Wu, C. Zhang, M. Guan, and J. Tan, (2016) “Laser surface alloying of FeCoCrAlNi highentropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance" Optics & Laser Technology 84: 23–31. DOI: 10.1016/j.optlastec.2016.04. 011.
  28. [28] C. L. Wu, S. Zhang, C. H. Zhang, H. Zhang, and S. Y. Dong, (2017) “Phase evolution and properties in laser surface alloying of FeCoCrAlCuNi x high-entropy alloy on copper substrate" Surface & Coatings Technology 315: 368–376. DOI: 10.1016/j.surfcoat.2017.02.068.
  29. [29] J. Sudagar, J. Lian, and W. Sha, (2013) “Electroless nickel , alloy , composite and nano coatings A critical review" Journal of Alloys and Compounds 571: 183– 204. DOI: 10.1016/j.jallcom.2013.03.107.
  30. [30] M. A. A. Hanim. 3. 15 Electroless Plating as Surface Finishing in Electronic Packaging. 3. 2017, 220–229. DOI: 10.1016/B978-0-12-803581-8.09177-3.
  31. [31] A. E. El-nikhaily and O. A. Elkady, (2021) “Improvement ductility and corrosion resistance of CoCrFeNi and AlCoCrFeNi HEAs by electroless copper technique" Journal of Materials Research and Technology 13: 463– 485. DOI: 10.1016/j.jmrt.2021.04.083.
  32. [32] G. Dai, S. Wu, and X. Huang, (2022) “Preparation process for high-entropy alloy coatings based on electroless plating and thermal diffusion" Journal of Alloys and Compounds 902: 163736. DOI: 10.1016/j.jallcom.2022.163736.
  33. [33] M.-D. Ger, Y. Sung, and J.-L. Ou, (2005) “A novel process of electroless Ni P plating by nonisothermal method" Materials Chemistry and Physics 89: 383–389. DOI: 10.1016/j.matchemphys.2004.09.018.
  34. [34] H. Ding, J. Dai, T. Dai, Y. Sun, T. Lu, M. Li, X. Jia, and D. Huang, (2020) “Effect of preheating / post-isothermal treatment temperature on microstructures and properties of cladding on U75V rail prepared by plasma cladding method" Surface & Coatings Technology 399: 126122. DOI: 10.1016/j.surfcoat.2020.126122.
  35. [35] H. Zhang, K. Mei, W. Guo, and Z. Li, (2023) “Comparative study on microstructures and properties of air-cooled and water-cooled Fe-based plasma arc cladding layers" Journal of Materials Research and Technology 23: 1599–1608. DOI: 10.1016/j.jmrt.2023.01.113.
  36. [36] Q. Shen, J. Xue, X. Yu, Z. Zheng, and N. Ou, (2022) “Triple-wire plasma arc cladding of Cr-Fe-Ni-Ti x highentropy alloy coatings" Surface & Coatings Technology 443: 128638. DOI: 10.1016/j.surfcoat.2022.128638.
  37. [37] Y. Xie, X. Wen, J. Yan, B. Huang, and J. Zhuang, (2023) “Microstructure and wear resistance of AlCoCrFeNiCuSn X high-entropy alloy coatings by plasma cladding" Vacuum 214: 112176. DOI: 10.1016/j.vacuum.2023.112176.
  38. [38] Y. Xie, X. Wen, B. Huang, and J. Zhuang, (2023) “Microstructure , hardness and corrosion properties of AlCoCrFeNi 2 . 1 YHf high-entropy alloy coating prepared by plasma cladding" Materials Letters 330: 133356. DOI: 10.1016/j.matlet.2022.133356.
  39. [39] G. B. Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, (2017) “Plasma electrolytic oxidation of magnesium and its alloys : Mechanism , properties and applications" Journal of Magnesium and Alloys 5: 74–132. DOI: 10.1016/j.jma.2017.02.004.
  40. [40] J. Li, Y. Huang, X. Meng, and Y. Xie, (2019) “A Review on High Entropy Alloys Coatings : Fabrication Processes and Property Assessment" Advanced Engineering Materials 1900343: 1–27. DOI: 10.1002/adem.201900343.
  41. [41] Q. Fang, Y. Chen, J. Li, Y. Liu, and Y. Liu, (2018) “Microstructure and mechanical properties of FeCoCrNiNb X high-entropy alloy coatings" Physica B: Physics of Condensed Matter 550: 112–116. DOI: 10.1016/j.physb.2018.08.044.
  42. [42] G. Mauer, R. Vaßen, and D. Stöver, (2007) “Controlling the oxygen contents in vacuum plasma sprayed metal alloy coatings" Surface and Coatings Technology 201: 4796–4799. DOI: 10.1016/j.surfcoat.2006.10.008.
  43. [43] M. F. Morks, (2010) “Plasma spraying of zirconia titania silica bio-ceramic composite coating for implant application" Materials Letters 64: 1968–1971. DOI: 10.1016/j.matlet.2010.06.016.
  44. [44] C. M. Hackett, G. S. Settles, and J. D. Miller, (1994) “On the gas dynamics of HVOF thermal sprays" Journal of Thermal Spray Technology 3: 299–304. DOI: 10.1007/BF02646278.
  45. [45] S. Rech, A. Surpi, S. Vezzù, A. Patelli, A. Trentin, J. Glor, J. Frodelius, L. Hultman, and P. Eklund, (2013) “Cold-spray deposition of Ti2AlC coatings" Vacuum 94: 69–73. DOI: 10.1016/j.vacuum.2013.01.023.
  46. [46] Y. Tao, T. Xiong, C. Sun, H. Jin, H. Du, and T. Li, (2009) “Effect of α-Al 2 O 3 on the properties of cold sprayed Al/α-Al 2 O 3 composite coatings on AZ91D magnesium alloy" Applied Surface Science 256: 261– 266. DOI: 10.1016/j.apsusc.2009.08.012.
  47. [47] A. Siao, M. Ang, C. C. Berndt, M. L. Sesso, A. Anupam, S. Praveen, R. S. Kottada, and B. S. Murty, (2015) “Plasma-Sprayed High Entropy Alloys : Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi" Matellurgical and Materials Transaction A 46A: 791–800. DOI: 10.1007/s11661-014-2644-z.
  48. [48] L. Tian, Z. Feng, and W. Xiong, (2018) “Microstructure, Microhardness, and Wear Resistance of AlCoCrFeNiTi/Ni60 Coating by Plasma Spraying" Coatings 8: 112. DOI: 10.3390/coatings8030112.
  49. [49] W.-l. Hsu, H. Murakami, J.-w. Yeh, A.-c. Yeh, and K. Shimoda, (2017) “On the Study of Thermal Sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay Coating" Surface & Coatings Technology 316: 71–74. DOI: 10.1016/j.surfcoat.2017.02.073.
  50. [50] M. Löbel, T. Lindner, T. Mehner, and T. Lampke, (2017) “Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF" Coatings 7: 144. DOI: 10.3390/coatings7090144.
  51. [51] S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, and K. Wen, (2019) “Deposition of FeCoNiCrMn high entropy alloy ( HEA ) coating via cold spraying" Journal of Materials Science & Technology 35: 1003–1007. DOI: 10.1016/j.jmst.2018.12.015.
  52. [52] Y. Zou, Z. Qiu, C. Huang, D. Zeng, and R. Lupoi, (2022) “Microstructure and tribological properties of Al 2 O 3 reinforced FeCoNiCrMn high entropy alloy composite coatings by cold spray" Surface & Coatings Technology 434: 128205. DOI: 10.1016/j.surfcoat.2022.128205.
  53. [53] M. Xue, X. Mao, Y. Lv, Y. Chi, Y. Yang, J. He, and Y. Dong, (2021) “Comparison of Micro-nano FeCoNiCrAl and FeCoNiCrMn Coatings Prepared from Mechanical Alloyed High-entropy Alloy Powders" Journal of Thermal Spray Technology 30: 1666–1678. DOI: 10.1007/s11666-021-01210-1.
  54. [54] P. Yang, Y. Liu, X. Zhao, J. Cheng, and H. Li, (2016) “Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders" Advanced Powder Technology 27: 1128–1133. DOI: 10.1016/j.apt.2016.03.023.
  55. [55] A. Fasasi, S. Roy, A. Galerie, M. Pons, and M. Caillet, (1992) “Laser surface alloying of Ti-6Al-4V with silicon for improved hardness and high-temperature oxidation resistance" Materials Letters 13: 204–211. DOI: 10.1016/0167-577X(92)90221-5.
  56. [56] J. Jiang, X. Feng, Y. Shen, C. Lu, and Y. Tian, (2019) “Surface & Coatings Technology Oxidation behavior of CrAlSi12 composite coatings on Ti-6Al-4V alloy substrate fabricated via high-energy mechanical alloying method" Surface & Coatings Technology 367: 212–224. DOI: 10.1016/j.surfcoat.2019.03.070.
  57. [57] C. Shang, E. Axinte, W. Ge, Z. Zhang, and Y. Wang, (2017) “High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering" Surfaces and Interfaces 9: 36–43. DOI: 10.1016/j. surfin.2017.06.012.
  58. [58] W. Ge, B. Wu, S. Wang, S. Xu, C. Shang, Z. Zhang, and Y. Wang, (2017) “Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sinterin" Advanced Powder Technology 28: 2556–2563. DOI: 10.1016/j.apt.2017.07.006.
  59. [59] A. Verma, P. Tarate, A. C. Abhyankar, M. R. Mohape, and D. S. Gowtam, (2019) “High temperature wear in CoCrFeNiCu x high entropy alloys: The role of Cu" Scripta Materialia 161: 28–31. DOI: 10.1016/j.scriptamat.2018.10.007.
  60. [60] C.-l. Chen, (2020) “Microstructure and mechanical properties of AlCuNiFeCr high entropy alloy coatings by mechanical alloying" Surface & Coatings Technology 386: 125443. DOI: 10.1016/j.surfcoat.2020.125443.
  61. [61] Y. Tian, C. Lu, Y. Shen, and X. Feng, (2019) “Microstructure and corrosion property of CrMnFeCoNi high entropy alloy coating on Q235 substrate via mechanical alloying method" Surfaces and Interfaces 15: 135–140. DOI: 10.1016/j.surfin.2019.02.004.
  62. [62] E. Vmcoille, (1993) “Dry sliding wear of TiN based ternary PVD coatings" Wear 165: 41–49.
  63. [63] A. Zhang, J. Han, B. Su, and J. Meng, (2018) “A promising new high temperature self-lubricating material : CoCrFeNiS 0 . 5 high entropy alloy" Materials Science & Engineering A 731: 36–43. DOI: 10.1016/j.msea.2018.06.030.
  64. [64] R. Mitra and Y. R. Mahajan, (1995) “Interfaces in discontinuously reinforced metal matrix composites: An overview" Bulletin of Materials Science 18: 405–434. DOI: 10.1007/BF02749771.
  65. [65] Z. Rahmati, H. Jamshidi Aval, S. Nourouzi, and R. Jamaati, (2022) “Effect of copper reinforcement on the microstructure, macrotexture, and wear properties of a friction-surfaced Al-Cu-Mg coating" Surface and Coatings Technology 438: 128380. DOI: 10.1016/j.surfcoat.2022.128380.
  66. [66] H. Liu, Q. Gao, J. Dai, P. Chen, W. Gao, and J. Hao, (2022) “Tribology International Microstructure and hightemperature wear behavior of CoCrFeNiW x high-entropy alloy coatings fabricated by laser cladding" Tribology International 172: 107574. DOI: 10.1016/j.triboint. 2022.107574.
  67. [67] X. Chen, Y. Du, and Y. W. Chung, (2019) “Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings" Thin Solid Films 688: 137265. DOI: 10.1016/j.tsf.2019.04.040.
  68. [68] H. T. Vo, M. Rebelo, D. Figueiredo, S. Kolozsv, P. Hosemann, and R. Franz, (2021) “High temperature fracture toughness of single-layer CrAlN and CrAlSiN hard coatings" Surface & Coatings Technology 409: 126909. DOI: 10.1016/j.surfcoat.2021.126909.
  69. [69] C. Wang, J. Miranda, Y. Yang, and Y.-w. Chung, (2016) “Investigation of hardness and fracture toughness properties of Fe / VC multilayer coatings with coherent interfaces" Surface & Coatings Technology 288: 179–184. DOI: 10.1016/j.surfcoat.2016.01.025.
  70. [70] S. Dal, A. Günen, N. Makuch, Y. Alt?nay, and C. Çarbo, (2022) “Determination of fracture toughness of boride layers grown on by nanoindentation" Ceramics International 48: 36410–36424. DOI: 10.1016/j.ceramint.2022.08.201.
  71. [71] Y. Shi, B. Yang, and P. K. Liaw, (2017) “Corrosionresistant high-entropy alloys: A review" Metals 7: 1–18. DOI: 10.3390/met7020043.
  72. [72] M. Kafali, K. M. Doleker, A. Erdogan, S. E. Sunbul, K. Icin, A. Yildiz, and M. S. Gok, (2023) “Wear, corrosion and oxidation characteristics of consolidated and laser remelted high entropy alloys manufactured via powder metallurgy" Surface and Coatings Technology 467: 129704. DOI: 10.1016/j.surfcoat.2023.129704.
  73. [73] W. Li, P. Liu, and P. K. Liaw, (2018) “Microstructures and properties of high-entropy alloy films and coatings : a review" Materials Research Letters 3831: 199 229. DOI: 10.1080/21663831.2018.1434248.