Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Vikneswary Sooriyanarayanan1, Ong Yi Wen1, Mus’ab Abdul Razak1,2, Mohd Zahirasri Mohd Tohir1,2, Thomas Shean Yaw Choong1, and Mohamad Rezi Abdul Hamid1This email address is being protected from spambots. You need JavaScript enabled to view it.

1Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

2Safety Engineering Interest Group, Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia


 

 

Received: July 17, 2023
Accepted: January 9, 2024
Publication Date: February 15, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202411_27(11).0013  


The subject of oil-water separation has received tremendous attention in recent years due to an increasing amount of oily wastewater produced by industries and frequent incidents involving marine oil spills. Cotton fabrics can potentially be used as filtering element for oil-water separation but they are inherently flammable. Proper selection of surface finishing approaches/coating materials enable the fabrics to be endowed with improved fire safety and hydrophobic property for oil-water separation. In this work, a multifunctional coating comprises of polydimethylsiloxane (termed PMDS) and zeolitic imidazolate framework (ZIF-8) was applied to cotton fabrics via simple dip-coating method (termed COT-PDMS-ZIF8). COT-PDMS-ZIF8 displayed an improved hydrophobicity property with water contact angle of 140.3 . The coated fabric preferentially allows oil to permeate through the fabric filter with permeate flux of 0.35 ml·m−2 ·min−1 , resulting in oil-water separation efficiency ∼99%. Incorporation of crystalline ZIF-8 slows down rapid burning of cotton as evidenced by small derivative weight change (11.2% ·min−1 vs 16.21% ·min−1 ) from thermogravimetric analysis. Vertical flame test showed that the modified fabric burned longer than that of pristine fabric (38.75 sec vs 20.75 sec). Melt dripping behavior of cotton was successfully mitigated which further improve fire safety of the material. To sum up, a thin PDMS/ZIF-8 coating on cotton fabrics enhance hydrophobicity and fire performance of the fabrics considerably making them as promising candidate for oil-water separation.


Keywords: Metal organic framework; fire-resistant coating; hydrophobic coating; oil-water separation


  1. [1] G. Yue, Y. Wang, D. Li, L. Hou, Z. Cui, Q. Li, N. Wang, and Y. Zhao, (2020) “Bioinspired surface with special wettability for liquid transportation and separation" Sustainable Materials and Technologies 25: e00175. DOI: 10.1016/j.susmat.2020.e00175.
  2. [2] Z. Xu, Y. Zhao, H. Wang, X. Wang, and T. Lin, (2015) “A Superamphiphobic Coating with an AmmoniaTriggered Transition to Superhydrophilic and Superoleophobic for Oil–Water Separation" Angewandte Chemie International Edition 54(15): 4527–4530. DOI: 10.1002/anie.201411283.
  3. [3] E. Pakdel, J. Wang, R. Varley, and X. Wang, (2021) “Recycled carbon fiber nonwoven functionalized with fluorinefree superhydrophobic PDMS/ZIF-8 coating for efficient oil-water separation" Journal of Environmental Chemical Engineering 9(6): 106329. DOI: 10.1016/j.jece.2021.106329.
  4. [4] M. Cao, Y. Feng, Q. Chen, P. Zhang, S. Guo, and J. Yao, (2020) “Flexible Co-ZIF-L@melamine sponge with underwater superoleophobicity for water/oil separation" Materials Chemistry and Physics 241: 122385. DOI: 10.1016/j.matchemphys.2019.122385.
  5. [5] L. Zhang, J. Xie, X. Luo, X. Gong, and M. Zhu, (2023) “Enhanced hydrophobicity of shell-ligand-exchanged ZIF8/melamine foam for excellent oil-water separation" Chemical Engineering Science 273: 118663. DOI: 10.1016/j.ces.2023.118663.
  6. [6] E. Pakdel, J. Wang, S. Kashi, L. Sun, and X. Wang, (2020) “Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments" Advances in Colloid and Interface Science 277: 102116. DOI: 10.1016/j.cis.2020.102116.
  7. [7] X. Liao, H. Li, L. Zhang, X. Su, X. Lai, and X. Zeng, (2018) “Superhydrophobic mGO/PDMS hybrid coating on polyester fabric for oil/water separation" Progress in Organic Coatings 115: 172–180. DOI: 10.1016/j.porgcoat.2017.12.001.
  8. [8] A. K. Singh and J. K. Singh, (2017) “Fabrication of durable super-repellent surfaces on cotton fabric with liquids of varying surface tension: Low surface energy and high roughness" Applied Surface Science 416: 639– 648. DOI: 10.1016/j.apsusc.2017.04.148.
  9. [9] X. Yan, X. Zhu, Y. Ruan, T. Xing, G. Chen, and C. Zhou, (2020) “Biomimetic, dopamine-modified superhydrophobic cotton fabric for oil–water separation" Cellulose 27(13): 7873–7885. DOI: 10.1007/s10570-020-03336-x.
  10. [10] Q.-Y. Cheng, C.-S. Guan, M. Wang, Y.-D. Li, and J.-B. Zeng, (2018) “Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation" Carbohydrate Polymers 199: 390–396. DOI: 10.1016/j.carbpol.2018.07.046.
  11. [11] Q.-Y. Cheng, X.-P. An, Y.-D. Li, C.-L. Huang, and J.-B. Zeng, (2017) “Sustainable and Biodegradable Superhydrophobic Coating from Epoxidized Soybean Oil and ZnO Nanoparticles on Cellulosic Substrates for Efficient Oil/Water Separation" ACS Sustainable Chemistry Engineering 5(12): 11440–11450. DOI: 10.1021/acssuschemeng.7b02549.
  12. [12] D. Sriramulu, E. L. Reed, M. Annamalai, T. V. Venkatesan, and S. Valiyaveettil, (2016) “Synthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles" Scientific Reports 6(1): 35993. DOI: 10.1038/srep35993.
  13. [13] M. R. Abdul Hamid, T. C. Shean Yaw, M. Z. Mohd Tohir, W. A. Wan Abdul Karim Ghani, P. D. Sutrisna, and H.-K. Jeong, (2021) “Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities" Journal of Industrial and Engineering Chemistry 98: 17–41. DOI: 10.1016/j.jiec.2021.03.047.
  14. [14] E. E. Sann, Y. Pan, Z. Gao, S. Zhan, and F. Xia, (2018) “Highly hydrophobic ZIF-8 particles and application for oilwater separation" Separation and Purification Technology 206: 186–191. DOI: 10.1016/j.seppur.2018.04.027.
  15. [15] H. Nabipour, X. Wang, L. Song, and Y. Hu, (2020) “Metal-organic frameworks for flame retardant polymers application: A critical review" Composites Part A: Applied Science and Manufacturing 139: 106113. DOI: 10.1016/j.compositesa.2020.106113.
  16. [16] Y. Yang, Z. Guo, W. Huang, S. Zhang, J. Huang, H. Yang, Y. Zhou, W. Xu, and S. Gu, (2020) “Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric" Applied Surface Science 503: 144079. DOI: 10.1016/j.apsusc.2019.144079.
  17. [17] X. Yang, S. Li, Y. Yao, J. Zhao, Z. Zhu, and C. Chai, (2021) “Preparation and characterization of polypropylene non-woven fabric/ZIF-8 composite film for efficient oil/water separation" Polymer Testing 100: 107263. DOI: 10.1016/j.polymertesting.2021.107263.
  18. [18] J. Mao, M. Ge, J. Huang, Y. Lai, C. Lin, K. Zhang, K. Meng, and Y. Tang, (2017) “Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation" Journal of Materials Chemistry A 5(23): 11873–11881. DOI: 10.1039/C7TA01343D.
  19. [19] M. Shahmirzaee, A. Hemmati-Sarapardeh, M. M. Husein, M. Schaffie, and M. Ranjbar, (2020) “Development of a powerful zeolitic imidazolate framework (ZIF8)/carbon fiber nanocomposite for separation of hydrocarbons and crude oil from wastewater" Microporous and Mesoporous Materials 307: 110463. DOI: 10.1016/j.micromeso.2020.110463.
  20. [20] Y. Li, Z. Lin, X. Wang, Z. Duan, P. Lu, S. Li, D. Ji, Z. Wang, G. Li, D. Yu, and W. Liu, (2021) “Highhydrophobic ZIF-8@PLA composite aerogel and application for oil-water separation" Separation and Purification Technology 270: 118794. DOI: 10.1016/j.seppur.2021.118794.
  21. [21] S. R. Venna, J. B. Jasinski, and M. A. Carreon, (2010) “Structural Evolution of Zeolitic Imidazolate Framework-8" Journal of the American Chemical Society 132(51): 18030–18033. DOI: 10.1021/ja109268m.
  22. [22] M. R. Abdul Hamid, S. Park, J. S. Kim, Y. M. Lee, and H.-K. Jeong, (2019) “Synthesis of Ultrathin Zeolitic Imidazolate Framework ZIF-8 Membranes on Polymer Hollow Fibers Using a Polymer Modification Strategy for Propylene/Propane Separation" Industrial Engineering Chemistry Research 58(32): 14947–14953. DOI: 10.1021/acs.iecr.9b02969.
  23. [23] S. Wang, X. Sui, Y. Li, J. Li, H. Xu, Y. Zhong, L. Zhang, and Z. Mao, (2016) “Durable flame retardant finishing of cotton fabrics with organosilicon functionalized cyclotriphosphazene" Polymer Degradation and Stability 128: 22–28. DOI: 10.1016/j.polymdegradstab.2016.02.009.
  24. [24] G. Malucelli, (2020) “Flame-Retardant Systems Based on Chitosan and Its Derivatives: State of the Art and Perspectives" Molecules 25(18): 4046. DOI: 10.3390/molecules25184046.
  25. [25] M. Maqsood and G. Seide, (2020) “Biodegradable Flame Retardants for Biodegradable Polymer" Biomolecules 10(7): 1038. DOI: 10.3390/molecules25184046.
  26. [26] D. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, and M. Hmadeh, (2018) “Crystal Growth of ZIF-8, ZIF67, and Their Mixed-Metal Derivatives" Journal of the American Chemical Society 140(5): 1812–1823. DOI: 10.1021/jacs.7b11589.
  27. [27] Y. Pan, Y. Liu, G. Zeng, L. Zhao, and Z. Lai, (2011) “Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system" Chemical Communications 47(7): 2071–2073. DOI: 10.1039/C0CC05002D.
  28. [28] A. D. French, (2014) “Idealized powder diffraction patterns for cellulose polymorphs" Cellulose 21(2): 885–896. DOI: 10.1007/s10570-013-0030-4.
  29. [29] T. Gou, X. Wu, Q. Zhao, S. Chang, and P. Wang, (2021) “Novel phosphorus/nitrogen-rich oligomer with numerous reactive groups for durable flame-retardant cotton fabric" Cellulose 28(11): 7405–7419. DOI: 10.1007/s10570-021-03980-x.
  30. [30] M. Bergaoui, M. Khalfaoui, A. Awadallah-F, and S. Al-Muhtaseb, (2021) “A review of the features and applications of ZIF-8 and its derivatives for separating CO2 and isomers of C3- and C4- hydrocarbons" Journal of Natural Gas Science and Engineering 96: 104289. DOI: 10.1016/j.jngse.2021.104289.
  31. [31] M. R. Abdul Hamid and H.-K. Jeong, (2020) “Flow synthesis of polycrystalline ZIF-8 membranes on polyvinylidene fluoride hollow fibers for recovery of hydrogen and propylene" Journal of Industrial and Engineering Chemistry 88: 319–327. DOI: 10.1016/j.jiec.2020.04.031.
  32. [32] F. Fang, X. Zhang, Y. Meng, Z. Gu, C. Bao, X. Ding, S. Li, X. Chen, and X. Tian, (2015) “Intumescent flame retardant coatings on cotton fabric of chitosan and ammonium polyphosphate via layer-by-layer assembly" Surface and Coatings Technology 262: 9–14. DOI: 10.1016/j.surfcoat.2014.11.011.
  33. [33] J. Yu, Z. Pang, C. Zheng, T. Zhou, J. Zhang, H. Zhou, and Q. Wei, (2019) “Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity" Applied Surface Science 470: 84–90. DOI: 10.1016/j.apsusc.2018.11.112.
  34. [34] Z. Gao, N. Li, M. Chen, and W. Yi, (2019) “Comparative study on the pyrolysis of cellulose and its model compounds" Fuel Processing Technology 193: 131–140. DOI: 10.1016/j.fuproc.2019.04.038.
  35. [35] L. Xu, Y. Liu, X. Yuan, J. Wan, L. Wang, H. Pan, and Y. Shen, (2020) “One-pot preparation of robust, ultravioletproof superhydrophobic cotton fabrics for self-cleaning and oil/water separation" Cellulose 27(15): 9005–9026. DOI: 10.1007/s10570-020-03369-2.
  36. [36] J. Ran, H. Chen, S. Bi, Q. Guo, C. Yan, X. Tang, D. Cheng, G. Cai, and X. Wang, (2021) “Polydopamineinduced in-situ growth of zeolitic imidazolate framework8/TiO2 nanoparticles on cotton fabrics for photocatalytic performance" Progress in Organic Coatings 152: 106123. DOI: 10.1016/j.porgcoat.2020.106123.
  37. [37] B. Wu, B. Zhang, J. Wu, Z. Wang, H. Ma, M. Yu, L. Li, and J. Li, (2015) “Electrical Switchability and Dry-Wash Durability of Conductive Textiles" Scientific Reports 5(1): 11255. DOI: 10.1038/srep11255.
  38. [38] H. Bian, J. Yong, Q. Yang, X. Hou, and F. Chen, (2020) “Simple and Low-Cost Oil/Water Separation Based on the Underwater Superoleophobicity of the Existing Materials in Our Life or Nature" Frontiers in Chemistry 8: DOI: 10.3389/fchem.2020.00507.
  39. [39] H. Nabipour, X. Wang, L. Song, and Y. Hu, (2020) “Hydrophobic and flame-retardant finishing of cotton fabrics for water–oil separation" Cellulose 27(7): 4145– 4159. DOI: 10.1007/s10570-020-03057-1.
  40. [40] G. Liu, W. Wang, and D. Yu, (2019) “Robust and selfhealing superhydrophobic cotton fabric via UV induced click chemistry for oil/water separation" Cellulose 26(5): 3529–3541. DOI: 10.1007/s10570-019-02289-0.
  41. [41] B. P. R. O. O. N. Christina W. Kartikowati, (2020) “Manufacture of a Hydrophobic Silica Nanoparticle Composite Membrane for Oil-Water Emulsion Separation" International Journal of Technology 11(2): 291–319. DOI: 10.14716/ijtech.v11i2.3279.
  42. [42] A. Singh, M. Singh, A. Pandey, A. V. Ullas, and S. Mishra, (2023) “Hydrophobicity of cotton fabric treated with plant extract, TiO2 nanoparticles and beeswax" Materials Today: Proceedings 80: 1530–1533. DOI: 10.1016/j.matpr.2023.01.353.
  43. [43] Electronic Article. 2020. DOI: 10.3390/coatings10100943.
  44. [44] Q. Zhou, B. Yan, T. Xing, and G. Chen, (2019) “Fabrication of superhydrophobic caffeic acid/Fe@cotton fabric and its oil-water separation performance" Carbohydrate Polymers 203: 1–9. DOI: 10.1016/j.carbpol.2018.09.025.
  45. [45] J. Wang and G. Geng, (2016) “Simple and eco-friendly fabrication of superhydrophobic textile for oil/water separation" Environmental Technology 37(13): 1591–1596. DOI: 10.1080/09593330.2015.1122094.
  46. [46] D. Lin, X. Zeng, H. Li, X. Lai, and T. Wu, (2019) “Onepot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction" Journal of Colloid and Interface Science 533: 198–206. DOI: 10.1016/j.jcis.2018.08.060.
  47. [47] M. Zhang, X. Shi, X. Dai, C. Huo, J. Xie, X. Li, and X. Wang, (2018) “Improving the crystallization and fire resistance of poly(lactic acid) with nano-ZIF-8@GO" Journal of Materials Science 53(9): 7083–7093. DOI: 10.1007/s10853-018-2049-2.
  48. [48] Electronic Article. 2020. DOI: 10.3390/polym12081826.
  49. [49] N. Li, Y. Xia, Z. Mao, L. Wang, Y. Guan, and A. Zheng, (2013) “Synergistic Effect of SiO2 on Intumescent Flame-retardant Polypropylene" Polymers and Polymer Composites 21(7): 439–448. DOI: 10.1177/096739111302100705.
  50. [50] T. Chen, J. Hong, C. Peng, G. Chen, C. Yuan, Y. Xu, B. Zeng, and L. Dai, (2019) “Superhydrophobic and flame retardant cotton modified with DOPO and fluorinesilicon-containing crosslinked polymer" Carbohydrate Polymers 208: 14–21. DOI: 10.1016/j.carbpol.2018.12.023.
  51. [51] Y. Zheng, Y. Lu, and K. Zhou, (2019) “A novel exploration of metal–organic frameworks in flame-retardant epoxy composites" Journal of Thermal Analysis and Calorimetry 138(2): 905–914. DOI: 10.1007/s10973-019-08267-9.
  52. [52] W. Meng, H. Wu, X. Bi, Z. Huo, J. Wu, Y. Jiao, J. Xu, M. Wang, and H. Qu, (2021) “Synthesis of ZIF-8 with encapsulated hexachlorocyclotriphosphazene and its quenching mechanism for flame-retardant epoxy resin" Microporous and Mesoporous Materials 314: 110885. DOI: 10.1016/j.micromeso.2021.110885.
  53. [53] F. Carosio, A. Di Pierro, J. Alongi, A. Fina, and G. Saracco, (2018) “Controlling the melt dripping of polyester fabrics by tuning the ionic strength of polyhedral oligomeric silsesquioxane and sodium montmorillonite coatings assembled through Layer by Layer" Journal of Colloid and Interface Science 510: 142–151. DOI: 10.1016/j.jcis.2017.09.059.
  54. [54] O. Y. Wen, M. Z. M. Tohir, T. C. S. Yeaw, M. A. Razak, H. S. Zainuddin, and M. R. A. Hamid, (2023) “Fireresistant and flame-retardant surface finishing of polymers and textiles: A state-of-the-art review" Progress in Organic Coatings 175: 107330. DOI: 10.1016/j.porgcoat.2022.107330.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.