Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Phuong Thai Pham1,2, Nam T.S. Phan1,2, Tung T. Nguyen1,2, Nguyen Khanh Duyen1,2, Thi-Thuy-Ngan Nguyen1,2, Ngoc-Thanh-Phuong Thai1,2, and Minh-Vien Le1,2This email address is being protected from spambots. You need JavaScript enabled to view it.

1Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam

2Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam


 

 

Received: June 30, 2023
Accepted: September 26, 2023
Publication Date: November 20, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202408_27(8).0011  


In this work, LaMnO3 was prepared by the sol-gel method followed by thermal treatment. The catalytic activity of LaMnO3 in the synthesis of 2-phenylbenzo[d]imidazo[2,1-b]thiazole (2-PIT) from 2-aminobenzothiazole and acetophenone was strongly influenced by the calcination temperature. The highest efficiency of samples synthesized at 800C was approved due to Lewis acid and oxygen vacancy sites properties which were confirmed through NH3-TPD and H2-TPR. Furthermore, the stability and reusability of the sample demonstrated the potential of LaMnO3 heterogeneous catalysts in organic synthesis applications.


Keywords: LaMnO3, acetophenone, 2-aminobenzothiazole, organic synthesis.


  1. [1] Y. Shi, N. Ni, Q. Ding, and X. Zhao, (2022) “Tailoring high-temperature stability and electrical conductivity of high entropy lanthanum manganite for solid oxide fuel cell cathodes" Journal of Materials Chemistry A 10(5): 2256–2270. DOI: 10.1039/d1ta07275g.
  2. [2] J. Tapia-P, Y. Cao, J. Gallego, J. M. Osorio-Guillén, D. Morgan, and J. F. Espinal, (2022) “CO Oxidation Catalytic Effects of Intrinsic Surface Defects in Rhombohedral LaMnO3" ChemPhysChem 23(11): e202200152. DOI: 10.1002/cphc.202200152.
  3. [3] I. Koriba, B. Lagoun, A. Guibadj, S. Belhadj, A. Ameur, and A. Cheriet, (2021) “Structural, electronic, magnetic and mechanical properties of three LaMnO3 phases: Theoretical investigations" Computational Condensed Matter 29: e00592. DOI: 10.1016/j.cocom.2021.e00592.
  4. [4] V. O. Anyanwu, H. B. Friedrich, A. S. Mahomed, S. Singh, and T. Moyo, (2023) “Phase Transition of HighSurface-Area Glycol–Thermal Synthesized Lanthanum Manganite" Materials 16(3): 1274. DOI: 10.3390/ma16031274.
  5. [5] L. Rørmark, K. Wiik, S. Stølen, and T. Grande, (2002) “Oxygen stoichiometry and structural properties of Lal−xAxMnO3±δ (A = Ca or Sr and 0 ≤ x ≤ 1)" Journal of Materials Chemistry 12(4): 1058–1067.
  6. [6] J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, and J. Li, (2014) “Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis" Acs Catalysis 4(9): 2917–2940. DOI: 10.1021/cs500606g.
  7. [7] G. Mitran, S. Chen, and D.-K. Seo, (2020) “Role of oxygen vacancies and Mn4+/Mn3+ ratio in oxidation and dry reforming over cobalt-manganese spinel oxides" Molecular Catalysis 483: 110704. DOI: 10.1016/j.mcat.2019.110704.
  8. [8] W. Zhu, X. Chen, Z. Liu, and C. Liang, (2020) “Insight into the effect of cobalt substitution on the catalytic performance of LaMnO3 perovskites for total oxidation of propane" The Journal of Physical Chemistry C 124(27): 14646–14657. DOI: 10.1021/acs.jpcc.0c03084.
  9. [9] Y. Wang, L. Chen, H. Cao, Z. Chi, C. Chen, X. Duan, Y. Xie, F. Qi, W. Song, J. Liu, et al., (2019) “Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3- δ perovskite composites for aqueous organic pollutants decontamination" Applied Catalysis B: Environmental 245: 546–554. DOI: 10.1016/j.apcatb.2019.01.025.
  10. [10] T. Sanaeishoar, H. Tavakkoli, and F. Mohave, (2014) “A facile and eco-friendly synthesis of imidazo [1, 2-a] pyridines using nano-sized LaMnO3 perovskite-type oxide as an efficient catalyst under solvent-free conditions" Applied Catalysis A: General 470: 56–62. DOI: 10.1016/j.apcata.2013.10.026.
  11. [11] M. Fink, M. Weiß, R. Marschall, and C. Roth. “DefectRich A-MnO2–Revealing the Optimum Mn4+/Mn3+ Cation Defect Density for High Electrocatalytic Activity”. In: Electrochemical Society Meeting Abstracts 239. 46. The Electrochemical Society, Inc. 2021, 1841–1841.
  12. [12] M. A. Kumar, T. N. Minh An, I. J. Lee, S. Park, and K. D. Lee, (2015) “Synthesis and bioactivity of novel phenothiazine-based thiazole derivatives" Phosphorus, Sulfur, and Silicon and the Related Elements 190(7): 1160–1168. DOI: 10.1080/10426507.2014.978324.
  13. [13] F. Sultana, S. R. Bonam, V. G. Reddy, V. L. Nayak, R. Akunuri, S. R. Routhu, A. Alarifi, M. S. K. Halmuthur, and A. Kamal, (2018) “Synthesis of benzo [d] imidazo [2, 1-b] thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents" Bioorganic chemistry 76: 1–12. DOI: 10.1016/j.bioorg.2017.10.019.
  14. [14] J. Wang, J. Li, and Q. Zhu, (2015) “Copper-promoted cycloaddition of α-methylenyl isocyanides with benzothiazoles: tunable access to benzo [d] imidazothiazoles" Organic letters 17(21): 5336–5339. DOI: 10.1021/acs.orglett.5b02694.
  15. [15] J. Zhang, X. Lu, T. Li, S. Wang, and G. Zhong, (2017) “Copper-Catalyzed Oxidative Cyclization of 2-Aminoazaarenes with Lignin Models: Synthesis of 3-Phenoxy Imidazo Heterocycles" The Journal of Organic Chemistry 82(10): 5222–5229. DOI: 10.1021/acs.joc.7b00480.
  16. [16] N. Mukku and B. Maiti, (2020) “On water catalyst-free synthesis of benzo [d] imidazo [2, 1-b] thiazoles and novel N-alkylated 2-aminobenzo [d] oxazoles under microwave irradiation" RSC advances 10(2): 770–778. DOI: 10.1039/c9ra08929b.
  17. [17] Heryanto, Hendri, B. Abdullah, and D. Tahir. “Analysis of structural properties of X-ray diffraction for composite copper-activated carbon by modified Williamson-Hall and size-strain plotting methods”. In: Journal of Physics: Conference Series. 1080. IOP Publishing. 2018, 012007. DOI: 10.1088/1742-6596/1080/ 1/012007.
  18. [18] M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, and G. Janusas, (2020) “Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction" Nanomaterials 10(9): 1627. DOI: 10.3390/nano10091627.
  19. [19] A. Gholizadeh, (2015) “X-ray peak broadening analysis in LaMnO3+ δ nano-particles with rhombohedral crystal structure" Journal of Advanced Materials and Processing 3(3): 71–83.
  20. [20] L. Vradman and A. Navrotsky, (2013) “Surface energetics of nanoscale LaMnO 3+ δ perovskite" Journal of the American Ceramic Society 96(10): 3202–3209. DOI: 10.1111/jace.12546.
  21. [21] J. Tapia-P, J. Gallego, and J. F. Espinal, (2021) “Calcination Temperature Effect in Catalyst Reactivity for the CO SELOX Reaction Using Perovskite-like LaBO 3 (B: Mn, Fe, Co, Ni) Oxides" Catalysis Letters: 1–14. DOI: 10.1007/s10562-021-03601-z.
  22. [22] Z.-J. Sui, L. Vradman, I. Reizner, M. V. Landau, and M. Herskowitz, (2011) “Effect of preparation method and particle size on LaMnO3 performance in butane oxidation" Catalysis Communications 12(15): 1437–1441. DOI: 10.1016/j.catcom.2011.06.001.
  23. [23] C. Zhang, Y. Guo, Y. Guo, G. Lu, A. Boreave, L. Retailleau, A. Baylet, and A. Giroir-Fendler, (2014) “LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene" Applied Catalysis B: Environmental 148: 490–498. DOI: 10.1016/j.apcatb.2013.11.030.
  24. [24] C. Zhang, K. Zeng, C. Wang, X. Liu, G. Wu, Z. Wang, and D. Wang, (2020) “LaMnO3 perovskites via a facile nickel substitution strategy for boosting propane combustion performance" Ceramics International 46(5): 6652–6662. DOI: 10.1016/j.ceramint.2019.11.153.
  25. [25] C. Zhang, C. Wang, W. Hua, Y. Guo, G. Lu, S. Gil, and A. Giroir-Fendler, (2016) “Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride" Applied Catalysis B: Environmental 186: 173–183. DOI: 10.1016/j.apcatb.2015.12.052.
  26. [26] Z. Sihaib, F. Puleo, G. Pantaleo, V. La Parola, J. L. Valverde, S. Gil, L. F. Liotta, and A. Giroir-Fendler, (2019) “The effect of citric acid concentration on the properties of LaMnO3 as a catalyst for hydrocarbon oxidation" Catalysts 9(3): 226. DOI: 10.3390/catal9030226.
  27. [27] M. S. Mostafa, A. O. A. El Naga, A. A. Galhoum, E. Guibal, and A. S. Morshedy, (2019) “A new route for the synthesis of self-acidified and granulated mesoporous alumina catalyst with superior Lewis acidity and its application in cumene conversion" Journal of Materials Science 54: 5424–5444. DOI: 10.1007/s10853-018-03270-1.
  28. [28] N. Hosseinpour, A. A. Khodadadi, Y. Mortazavi, and A. Bazyari, (2009) “Nano-ceria–zirconia promoter effects on enhanced coke combustion and oxidation of CO formed in regeneration of silica–alumina coked during cracking of triisopropylbenzene" Applied Catalysis A: General 353(2): 271–281. DOI: 10.1016/j.apcata.2008.10.051.
  29. [29] R.-K. Chen, T.-F. Yu, M.-X. Wu, T.-W. Tzeng, P.-W. Chung, and Y.-C. Lin, (2018) “The aldolization nature of Mn4+-nonstoichiometric oxygen pair sites of perovskite-type LaMnO3 in the conversion of ethanol" ACS Sustainable Chemistry & Engineering 6(9): 11949–11958. DOI: 10.1021/acssuschemeng.8b02269.
  30. [30] P. H. Pham, Q. T. Nguyen, N. K. Tran, V. H. Nguyen, S. H. Doan, H. Q. Ha, T. Truong, and N. T. Phan, (2018) “Metal-Free Synthesis of Furocoumarins: An Approach via Iodine-Promoted One-Pot Cyclization between 4-Hydroxycoumarins and Acetophenones" European Journal of Organic Chemistry 2018(32): 4431–4435. DOI: 10.1002/ejoc.201800983.
  31. [31] S. Mishra, K. Monir, S. Mitra, and A. Hajra, (2014) “FeCl3/ZnI2-catalyzed synthesis of benzo [d] imidazo [2, 1- b] thiazole through aerobic oxidative cyclization between 2- aminobenzothiazole and ketone" Organic letters 16(23): 6084–6087. DOI: 10.1021/ol5028893.
  32. [32] H. Sanaeishoar, H. Tavakkoli, M. Asareh, and F. Mohave, (2016) “One-pot synthesis of tri-and tetrasubstituted imidazoles using nano-LaMnO3 perovskite-type oxide as reusable heterogeneous catalyst in solvent-free condition" Iranian Journal of Catalysis 6(3-Special issue: Nanocatalysis): 213–219.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.