Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Sopiyan1This email address is being protected from spambots. You need JavaScript enabled to view it., Syaripuddin1, Adnan Ahmad1, Dwi Nanto2, Sigit Dwi Yudanto3, and Ferry Budhi Susetyo1

1Department of Mechanical Engineering, Universitas Negeri Jakarta, Rawamangun Muka Street, Jakarta, 13220, Indonesia

2Department of Physics Education, UIN Syarif Hidayatullah, Ir. H. Djuanda Street, Jakarta, 15412, Indonesia

3Research Center for Metallurgy - National Research and Innovation Agency, KST B.J. Habibie, South Tangerang, Banten, 15314, Indonesia


 

Received: May 22, 2023
Accepted: August 10, 2023
Publication Date: November 3, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202406_27(6).0012  


In a corrosive environment, it is crucial to increase the hardness and corrosion resistance of mild steel bucket excavators. Making a hard layer of nickel-chromium (NiCr) alloy by the deposition method is one of the many approaches to achieve this. In this research, a hard layer was deposited on the upper surface of mild steel using manual metal arc welding (MMAW). Starting with the addition of NiCr alloy during welding, the process continued with a quenching technique using different cooling media. In order to examine elemental composition, crystal structure, and microstructure, Optical Emission Spectroscopy (OES), X-ray diffraction (XRD), and optical microscopy (OM) are employed. The evaluation of hardness values, material deterioration, and electrochemical behaviour of the deposited layer involves hardness tests, digital balances, and potentiostats. Due to its improved hardness and corrosion resistance, NiCr has been successfully added to deposition layers. The increase was attributed to the presence of martensite and ferrite phases generated by the quenching technique and NiCr on the surface layer. The hardness value and corrosion resistance of samples coated with NiCr after being rapidly cooled in an oil medium are found to be suitable for excavator buckets, according to experimental findings.


Keywords: Corrosion resistance; NiCr; Welding; Hardness; Oil; Quenching


  1. [1] V. Vukojevi´c, A. Sedmak, S. Jovi´c, B. Nedeljkovi´c, and I. Blaˇci´c, (2018) “The Effect of Vanadium Content on Microstructure and Impact Toughness of Forged High Alloy Steel X96CrMo12-1" International Journal of Metalcasting 13(1): 82–88. DOI: 10.1007/s40962-018-0225-4.
  2. [2] M. A. Korchuganov, A. V. Filippov, S. Y. Tarasov, O. A. Podgornyh, N. N. Shamarin, and E. O. Filippova. “An experimental modeling and acoustic emission monitoring of abrasive wear in a steel/diabase pair”. In: AIP Conference Proceedings. Author(s), 2016. DOI: 10.1063/1.4966395.
  3. [3] D. T. Tanasache, D. Dinica, E. F. Binchiciu, and H. Binchiciu, (2018) “Equal Resistant to Wear Blades Used in Rough Exploitation Conditions" Advanced Materials Research 1146: 22–26. DOI: 10.4028/www.scientific.net/amr.1146.22.
  4. [4] L. Widder, M. Varga, K. Adam, and A. Kuttner, (2017) “Development of Impact Energy Distribution of Various Abrasives during Cyclic Impact/Abrasion Testing" Solid State Phenomena 267: 234–242. DOI: 10.4028/www.scientific.net/ssp.267.234.
  5. [5] S. Singla, A. S. Kang, J. S. Grewal, and G. S. Cheema, (2014) “Wear Behavior of Weld Overlays on Excavator Bucket Teeth" Procedia Materials Science 5: 256–266. DOI: 10.1016/j.mspro.2014.07.265.
  6. [6] A. Kele¸s and M. Yildirim, (2020) “Improvement of mechanical properties by means of titanium alloying to steel teeth used in the excavator" Engineering Science and Technology, an International Journal 23(5): 1208– 1213. DOI: 10.1016/j.jestch.2019.12.003.
  7. [7] S. H. Suryo, S. A. Widyanto, P. Paryanto, and A. S. Mansuri, (2018) “Hardness Optimization of Heat Treatment Process of Bucket Teeth Excavator" Civil Engineering Journal 4(2): 294. DOI: 10.28991/cej-030992.
  8. [8] S. Atakhanova, U. Kasimov, R. Karimov, and B. Khasanov, (2021) “Improving the wear resistance of mining excavator":
  9. [9] Y. Purwaningrum, M. Hafiz, and R. Suparyanto, (2020) “Analysis of Physical and Mechanical Properties of Backhoe’s Bucket Repairment with Cladding Methode" Key Engineering Materials 841: 254–258.
  10. [10] V. Gromov, S. Raykov, V. Kormyshev, D. Kosinov, O. Kondratova, and D. Romanov. “Physical and technical fundamentals of technology used to increase the wear resistance of working surfaces of large volume excavator buckets”. In: IOP Conference Series: Earth and Environmental Science. 206. 1. IOP Publishing. 2018, 012029.
  11. [11] H. Zhao, (2022) “Effect Of Magnesium Alloy Surface Spray Coating On The Wear Resistance Of Sports Equipment" Journal of Applied Science and Engineering 26: 423–432. DOI: 10.6180/jase.202303_26(3).0013.
  12. [12] J. Mehta, V. K. Mittal, and P. Gupta, (2017) “Role of Thermal Spray Coatings on Wear, Erosion and Corrosion Behavior: A Review" Journal of Applied Science and Engineering 20: 445–452. DOI: 10.6180/jase.2017.20.4.05.
  13. [13] B. Cheniti, D. Miroud, P. Hvizdoš, J. Balko, R. Sedlák, T. Csanádi, B. Belkessa, and M. Fides, (2018) “Investigation of WC decarburization effect on the microstructure and wear behavior of WC-Ni hardfacing under dry and alkaline wet conditions" Materials Chemistry and Physics 208: 237–247. DOI: 10.1016/j.matchemphys.2018.01.052.
  14. [14] A. C. Crespo, A. Scotti, and M. R. Pérez, (2008) “Operational behavior assesment of coated tubular electrodes for SMAW hardfacing" Journal of Materials Processing Technology 199(1-3): 265–273. DOI: 10.1016/j.jmatprotec.2007.07.048.
  15. [15] A. Saha and S. C. Mondal, (2017) “Multi-objective optimization of manual metal arc welding process parameters for nano-structured hardfacing material using hybrid approach" Measurement 102: 80–89. DOI: 10.1016/j.measurement.2017.01.048.
  16. [16] V. Balasubramanian, R. Varahamoorthy, C. S. Ramachandran, and C. Muralidharan, (2008) “Selection of welding process for hardfacing on carbon steels based on quantitative and qualitative factors" The International Journal of Advanced Manufacturing Technology 40(9-10): 887–897. DOI: 10.1007/s00170-008-1406-8.
  17. [17] R. R. Garbade and N. B. Dhokey, (2021) “Overview on Hardfacing Processes, Materials and Applications" IOP Conference Series: Materials Science and Engineering 1017(1): 012033. DOI: 10.1088/1757899x/1017/1/012033.
  18. [18] R. Suraj, (2021) “Hardfacing and its effect on wear and corrossion performance of various ferrous welded mild steels" Materials Today: Proceedings 42: 842–850. DOI: 10.1016/j.matpr.2020.11.592.
  19. [19] J. J. Coronado, H. F. Caicedo, and A. L. Gómez, (2009) “The effects of welding processes on abrasive wear resistance for hardfacing deposits" Tribology International 42(5): 745–749. DOI: 10.1016/j.triboint.2008.10.012.
  20. [20] M. Kirchgaßner, E. Badisch, and F. Franek, (2008) “Behaviour of iron-based hardfacing alloys under abrasion and impact" Wear 265(5-6): 772–779. DOI: 10.1016/j.wear.2008.01.004.
  21. [21] S. Selvi, S. Sankaran, and R. Srivatsavan, (2008) “Comparative study of hardfacing of valve seat ring using MMAW process" Journal of Materials Processing Technology 207(1-3): 356–362. DOI: 10.1016/j.jmatprotec.2008.06.053.
  22. [22] R. A. Jeshvaghani, E. Harati, and M. Shamanian, (2011) “Effects of surface alloying on microstructure and wear behavior of ductile iron surface-modified with a nickel-based alloy using shielded metal arc welding" Materials &amp Design 32(3): 1531–1536. DOI: 10.1016/j.matdes.2010.10.006.
  23. [23] X. Ren, R. James, E. Brookes, and L. Wang, (2001) “Machining of high chromium hardfacing materials" Journal of Materials Processing Technology 115(3): 423–429. DOI: 10.1016/s0924-0136(01)01029-9.
  24. [24] M. Bahrololoom and A. Hoveidaei, (1999) “Influence of post-heat treatment and complexing agents on hardness of Ni–Cr alloy coatings" Surface Engineering 15(6): 502–504. DOI: 10.1179/026708499101516830.
  25. [25] S. A. A. Dilawary, A. Motallebzadeh, E. Atar, and H. Cimenoglu, (2018) “Influence of Mo on the high temperature wear performance of NiCrBSi hardfacings" Tribology International 127: 288–295. DOI: 10.1016/j.triboint.2018.06.022.
  26. [26] A. Bhaduri, R. Indira, S. Albert, B. Rao, S. Jain, and S. Asokkumar, (2004) “Selection of hardfacing material for components of the Indian Prototype Fast Breeder Reactor" Journal of Nuclear Materials 334(2-3): 109–114. DOI: 10.1016/j.jnucmat.2004.05.005.
  27. [27] D. Persson, S. Jacobson, and S. Hogmark, (2003) “Effect of temperature on friction and galling of laser processed Norem 02 and Stellite 21" Wear 255(1-6): 498– 503. DOI: 10.1016/s0043-1648(03)00122-4.
  28. [28] S. Nath, S. Pityana, and J. D. Majumdar, (2012) “Laser surface alloying of aluminium with WCCoNiCr for improved wear resistance" Surface and Coatings Technology 206(15): 3333–3341. DOI: 10.1016/j.surfcoat.2012.01.038.
  29. [29] K. Chong, Y. Zou, D. Wu, Y. Tang, and Y. Zhang, (2021) “Pulsed laser remelting supersonic plasma sprayed Cr3C2-NiCr coatings for regulating microstructure, hardness and corrosion properties" Surface and Coatings Technology 418: 127258. DOI: 10.1016/j.surfcoat.2021.127258.
  30. [30] M. Zhong, W. Liu, and H. Zhang, (2006) “Corrosion and wear resistance characteristics of NiCr coating by laser alloying with powder feeding on grey iron liner" Wear 260(11-12): 1349–1355. DOI: 10.1016/j.wear.2005.09.033.
  31. [31] U. Ozdemir, M. Sozeri, T. Findik, and V. Kilicli, (2023) “Effect of buttering on the wear behavior of the SMA welded hardfacing layer in a low-carbon steel" Materials Testing 65(4): 494–504. DOI: 10.1515/mt-2022-0438.
  32. [32] N. Galchenko, S. Raskoshniy, B. Dampilon, and K. Kolesnikova. “Features of crystallization of welded seams from diverse materials at electron beam welding on the example of highly steel and copper”. In: AIP Publishing, 2019. DOI: 10.1063/1.5131977.
  33. [33] T. SIDHU, S. PRAKASH, and R. AGRAWAL, (2006) “Hot corrosion performance of a NiCr coated Ni-based alloy" Scripta Materialia 55(2): 179–182. DOI: 10.1016/j.scriptamat.2006.03.054.
  34. [34] G. J. Adetunji, R. G. Faulkner, and E. A. Little, (1991) “Quenching-rate determination for standard steel tensile specimens" Journal of Materials Science 26(7): 1847–1850. DOI: 10.1007/bf00543613.
  35. [35] P. Brito, P. A. Ramos, L. P. Resende, D. A. de Faria, and O. K. Ribas, (2019) “Experimental investigation of cooling behavior and residual stresses for quenching with vegetable oils at different bath temperatures" Journal of Cleaner Production 216: 230–238. DOI: 10.1016/j.jclepro.2019.01.194.
  36. [36] E. Albertin, F. Beneduce, M. Matsumoto, and I. Teixeira, (2011) “Optimizing heat treatment and wear resistance of high chromium cast irons using computational thermodynamics" Wear 271(9-10): 1813–1818. DOI: 10.1016/j.wear.2011.01.079.
  37. [37] V. Garcia-Garcia, I. Mejia, and F. Reyes-Calderon, (2018) “Experimental and FEM study of Ti-containing TWIP steel weldability" Journal of Materials Processing Technology 261: 107–122. DOI: 10.1016/j.jmatprotec.2018.05.028.
  38. [38] R. Garcia, S. Canobre, and H. Costa, (2020) “Microabrasion-corrosion resistance of Ni–Cr superalloys deposited by plasma transferred arc (PTA) welding" Tribology International 143: 106080. DOI: 10.1016/j.triboint.2019.106080.
  39. [39] S. Syaripuddin, S. Sopiyan, S. Aditya, S. D. Yudanto, and F. B. Susetyo, (2023) “Synthesis of Hard Layer by Titanium Addition During Welding Process and Quenched Directly" International Journal of Engineering 36(3): 532–539. DOI: 10.5829/ije.2023.36.03c.13.
  40. [40] M. Morks and C. Berndt, (2010) “Corrosion and oxidation properties of NiCr coatings sprayed in presence of gas shroud system" Applied Surface Science 256(13): 4322–4327. DOI: 10.1016/j.apsusc.2010.02.024.
  41. [41] S. Afkhami and A. Halvaee. “Investigation of Weldability of Nichrome Alloy and Metallurgical Effects of Welding Parameters on Nichrome Using TIG Welding Process”. In: 2011.
  42. [42] M. Avazkonandeh-Gharavol, M. Haddad-Sabzevar, and A. Haerian, (2009) “Effect of copper content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal deposits" Materials &amp Design 30(6): 1902–1912. DOI: 10.1016/j.matdes.2008.09.023.
  43. [43] H. Vashishtha, R. V. Taiwade, R. K. Khatirkar, A. V. Ingle, and R. K. Dayal, (2014) “Welding Behaviour of Low Nickel Chrome-Manganese Stainless Steel" ISIJ International 54(6): 1361–1367. DOI: 10.2355/isijinternational.54.1361.
  44. [44] A. Larson and R. Dreele, (2004) “General Structure Analyst System" Los Alamos National Laboratory Report 86-748:
  45. [45] B. Srikarun and P. Muangjunburee, (2018) “The effect of iron-based hardfacing with chromium powder addition onto low carbon steel" Materials Today: Proceedings 5(3): 9272–9280. DOI: 10.1016/j.matpr.2017.10.100.
  46. [46] M. Balakrishnan, V. Balasubramanian, and G. M. Reddy, (2013) “Effect of Hardfacing Consumables on Ballistic Performance of Q&ampT Steel Joints" Defence Technology 9(4): 249–258. DOI: 10.1016/j.dt.2013.12.007.
  47. [47] K. K.M, (2012) “The Effects of Welding Processes on Microstructure and Abrasive Wear Resistance for Hardfacing Deposits" Bonfring International Journal of Industrial Engineering and Management Science 2(2): 28–34. DOI: 10.9756/bijiems.1298.
  48. [48] H. Saffari, M. Shamanian, A. Bahrami, and J. A. Szpunar, (2020) “Effects of ERNiCr-3 butter layer on the microstructure and mechanical properties of API 5L X65/AISI304 dissimilar joint" Journal of Manufacturing Processes 50: 305–318. DOI: 10.1016/j.jmapro.2019.12.028.
  49. [49] T. Kasuya and Y. HASHIBA, (2006) “Carbon Equivalent to Assess Hardenability of Steel and Prediction of HAZ Hardness Distribution":
  50. [50] R. Saeedi, R. S. Razavi, S. R. Bakhshi, M. Erfanmanesh, and A. A. Bani, (2021) “Optimization and characterization of laser cladding of NiCr and NiCr–TiC composite coatings on AISI 420 stainless steel" Ceramics International 47(3): 4097–4110. DOI: 10.1016/j.ceramint.2020.09.284.
  51. [51] G. Totten, H. Tensi, and K. Lainer, (1999) “Performance of Vegetable Oils as a Cooling Medium in Comparison to a Standard Mineral Oil" Journal of Materials Engineering and Performance 8(4): 409–416. DOI: 10.1361/105994999770346693.
  52. [52] Z. Chen, P. Nash, and Y. Zhang, (2019) “Correlation of Cooling Rate, Microstructure and Hardness of S34MnV Steel" Metallurgical and Materials Transactions B 50(4): 1718–1728. DOI: 10.1007/s11663-019-01621-0.
  53. [53] S. Dewangan, P. Singhal, S. K. Selvaraj, S. J. Dev, R. S. Swathish, M. Cheepu, S. Legutko, A. Adefris, S. Chattopadhyaya, and U. Chadha, (2022) “Analysing strength, hardness and grain-structure of 0.2%-C steel specimens processed through an identical heating period with different continuous transformation rates" Materials Research Express 9(12): 126505. DOI: 10.1088/2053-1591/aca7b2.
  54. [54] P. K. Katiyar, S. Misra, and K. Mondal, (2019) “Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel" Metallurgical and Materials Transactions A 50(3): 1489–1501. DOI: 10.1007/s11661-018-5086-1.
  55. [55] Z. Liu, X. Gao, L. Du, J. Li, Y. Kuang, and B. Wu, (2015) “Corrosion behavior of low-alloy steel with martensite/ferrite microstructure at vapor-saturated CO2 and CO2-saturated brine conditions" Applied Surface Science 351: 610–623. DOI: 10.1016/j.apsusc.2015.06.006.
  56. [56] A. Zeino, I. Abdulazeez, M. Khaled, M. W. Jawich, and I. B. Obot, (2018) “Mechanistic study of polyaspartic acid (PASP) as eco-friendly corrosion inhibitor on mild steel in 3% NaCl aerated solution" Journal of Molecular Liquids 250: 50–62. DOI: 10.1016/j.molliq.2017.11.160.
  57. [57] Nikhil, M. K. Singh, G. Ji, and R. Prakash, (2021) “Investigation on the effects of cooling rate on surface Texture, corrosion behaviour and hardness of pure copper" Materials Today: Proceedings 47: 6693–6695. DOI: 10.1016/j.matpr.2021.05.115.
  58. [58] S. Pareek, D. Jain, D. Behera, S. Sharma, and R. Shrivastava, (2021) “A review on inhibitors alleviating copper corrosion in hostile simulated Sea-water (3.5 wt.% NaCl solution)" Materials Today: Proceedings 43: 3303– 3308. DOI: 10.1016/j.matpr.2021.01.966.
  59. [59] Y. Xu, Q. Zhou, L. Liu, Q. Zhang, S. Song, and Y. Huang, (2020) “Exploring the corrosion performances of carbon steel in flowing natural sea water and synthetic sea waters" Corrosion Engineering, Science and Technology 55(7): 579–588. DOI: 10.1080/1478422x.2020.1765476.
  60. [60] M. Dan, N. Vaszilcsin, M. Labosel, and B. Pancan, (2014) “Expired Zosyn Drug as Corrosion Inhibitor for Carbon Steal in Sodium Chloride Solution" Chemical Bulletin of "POLITEHNICA" University of Timisoara, Romania 59(73): 13–18.
  61. [61] O. Kazum, M. B. Kannan, H. Beladi, I. Timokhina, P. Hodgson, and S. Khoddam, (2014) “Aqueous corrosion performance of nanostructured bainitic steel" Materials &amp Design (1980-2015) 54: 67–71. DOI: 10.1016/j.matdes.2013.08.015.
  62. [62] A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, A. hossein Mostafatabar, and M. Ramezanzadeh, (2020) “Estimating the synergistic corrosion inhibition potency of (2- (3,4-)-3,5,7-trihydroxy-4H-chromen-4-one) and trivalentcerium ions on mild steel in NaCl solution" Construction and Building Materials 261: 119923. DOI: 10.1016/j.conbuildmat.2020.119923.
  63. [63] M. A. Afandi, S. N. Saud, and E. Hamzah, (2020) “Green-based corrosion protection for mild steel in 3.5 % NaCl and distilled water medias: Jatropha curcas and Roselle extracts" Journal of Metals, Materials and Minerals 30(2): DOI: 10.55713/jmmm.v30i2.708.
  64. [64] F. B. Susetyo, B. Soegijono, Yusmaniar, and M. C. Fajrah. “Deposition of nickel films on polycrystalline copper alloy with various current densities from watts solution”. In: THE 2ND SCIENCE AND MATHEMATICS INTERNATIONAL CONFERENCE (SMIC 2020): Transforming Research and Education of Science and Mathematics in the Digital Age. AIP Publishing, 2021. DOI: 10.1063/5.0041640.