- [1] Y. Liu and X. B. Lu, (2022) “Chemical recycling to monomers: Industrial Bisphenol-A-Polycarbonates to novel aliphatic polycarbonate materials" Journal of Polymer Science 60(24): 3256–3268. DOI: 10.1002/pol.20220118.
- [2] S. Kumar, R. D. Kaushik, and L. P. Purohit, (2022) “ZnO-CdO nanocomposites incorporated with graphene oxide nanosheets for efficient photocatalytic degradation of bisphenol A, thymol blue and ciprofloxacin" Journal of Hazardous Materials 424: 127332. DOI: 10.1016/j.jhazmat.2021.127332.
- [3] M. S. H. Akash, S. Rasheed, K. Rehman, M. Imran, and M. A. Assiri, (2023) “Toxicological evaluation of bisphenol analogues: preventive measures and therapeutic interventions" RSC advances 13(31): 21613–21628. DOI: 10.1039/D3RA04285E.
- [4] N.-D. Pham, N. H. Thao, V. H. Luan, H. A. Hoang, S. Sagadevan, M.-T. Ngo, N. N. H. Duong, and M.-V. Le, (2023) “Photocatalytic disinfection of E. coli using silver-doped TiO2 coated on cylindrical cordierite honeycomb monolith photoreactor under artificial sunlight irradiation" Topics in Catalysis 66(1-4): 75–88. DOI: 10.1007/s11244-022-01700-8.
- [5] N. Q. D. Vo, N. D. T. Huynh, M. V. Le, K. D. Vo, and D.-V. N. Vo, (2020) “Fabrication of Ag-photodeposited TiO2/cordierite honeycomb monolith photoreactors for 2-naphthol degradation" Journal of Chemical Technology & Biotechnology 95(10): 2628–2637. DOI: 10.1002/jctb.6502.
- [6] C. Malengreaux, S. L. Pirard, G. Léonard, J. G. Mahy, M. Herlitschke, B. Klobes, R. P. Hermann, B. Heinrichs, and J. R. Bartlett, (2017) “Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing" Journal of Alloys and Compounds 691: 726–738. DOI: 10.1016/j.jallcom.2016.08.211.
- [7] M. Mousavi, M. Soleimani, M. Hamzehloo, A. Badiei, and J. B. Ghasemi, (2021) “Photocatalytic degradation of different pollutants by the novel gCN-NS/Black-TiO2 heterojunction photocatalyst under visible light: Introducing a photodegradation model and optimization by response surface methodology (RSM)" Materials Chemistry and Physics 258: 123912. DOI: 10.1016/j.matchemphys.2020.123912.
- [8] H. Hu, D. Qian, P. Lin, Z. Ding, and C. Cui, (2020) “Oxygen vacancies mediated in-situ growth of noble-metal (Ag, Au, Pt) nanoparticles on 3D TiO2 hierarchical spheres for efficient photocatalytic hydrogen evolution from water splitting" International Journal of Hydrogen Energy 45(1): 629–639. DOI: 10.1016/j.ijhydene.2019.10.231.
- [9] C. Abraham and L. G. Devi, (2022) “Incorporation of Fe3+ ions into the W6+ and N3- doped TiO2: Exploration of crucial role of Fe3+ dopant ion and correlation of adsorption characteristics with reaction dynamics" Surface Science 717: 121986. DOI: /10.1016/j.susc.2021.121986.
- [10] W. Choi, H. Park, and M. R. Hoffmann, (2010) “Effects of Single Metal-Ion Doping on the Visible-Light Photo-reactivity of TiO2" Journal of Physical Chemistry C 114(2): 783–792. DOI: 10.1021/jp908088x.
- [11] H. Khan and I. K. Swati, (2016) “Fe3+-doped Anatase TiO2 with d-d Transition, Oxygen Vacancies and Ti3+ Centers: Synthesis, Characterization, UV-vis Photocatalytic and Mechanistic Studies" Industrial and Engineering Chemistry Research 55(23): 6619–6633. DOI: 10.1021/acs.iecr.6b01104.
- [12] T. Ali, P. Tripathi, A. Azam, W. Raza, A. S. Ahmed, A. Ahmed, and M. Muneer, (2017) “Photocatalytic performance of Fe-doped TiO2 nanoparticles under visiblelight irradiation" Materials Research Express 4(1): DOI: 10.1088/2053-1591/aa576d.
- [13] M. Ismael, (2020) “Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles" Journal of Environmental Chemical Engineering 8(2): 103676. DOI: 10.1016/j.jece.2020.103676.
- [14] F. Whba, F. Mohamed, N. R. A. Md Rosli, I. Abdul Rahman, and M. I. Idris, (2021) “The crystalline structure of gadolinium oxide nanoparticles (Gd2O3-NPs) synthesized at different temperatures via X-ray diffraction (XRD) technique" Radiation Physics and Chemistry 179: 109212. DOI: 10.1016/j.radphyschem.2020.109212.
- [15] M. V. Le, Q. T. N. Nguyen, N. D. T. Huynh, N. D. Pham, C. H. Truong, H. T. Tran, P. N. M. Le, T. H. Ngo, and H. T. Huynh, (2023) “Direct Z-scheme CoTiO3/gC3N4 nanoparticles: fabrication and application as a photocatalyst for degradation of tetracycline hydrochloride assisted by peroxydisulfate or peroxymonosulfate under simulated sunlight" Nanotechnology for Environmental Engineering 8: 675–690. DOI: 10.1007/s41204-023-00323-y.
- [16] N. Q. D. Vo, N. D. T. Huynh, H. T. Huynh, T. H. Ngo, V. H. Luan, H. T. N. Suong, V. H. Nguyen, and M. V. Le, (2021) “TiO2-SiO2 coatings onto cordierite honeycomb monolith support for effective photocatalytic degradation of β-naphthol in a water solution" Materials Letters 302: 130461. DOI: 10.1016/j.matlet.2021.130461.
- [17] L.-F. Chiang and R.-A. Doong, (2014) “Cu–TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation" Journal of Hazardous Materials 277: 84–92. DOI: 10.1016/j.jhazmat.2014.01.047.
- [18] S. Y. M-Alvarez, J. L. G-Mar, G. T. T-Palomino, F. M. M-Alejandro, A. H. H-Ramírez, and L. H. H-Reyes, (2017) “UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol–gel method during MCPA degradation" Environmental Science and Pollution Research 24(14): 12673–12682. DOI: 10.1007/s11356-016-8034-x.
- [19] M. P. B-Vega, J. L. G-Mar, M. V. V-Rodríguez, L. M. M-Treviño, L. L. G-Tovar, A. H. H-Ramírez, and L. H. H-Reyes, (2017) “Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method" Materials Science in Semiconductor Processing 71: 275–282. DOI: 10.1016/j.mssp.2017.08.013.
- [20] M. Balakrishnan and R. John, (2021) “Impact of Ni metal ion concentration in TiO2 nanoparticles for enhanced photovoltaic performance of dye sensitized solar Cell" Journal of Materials Science: Materials in Electronics 32(5): 5295–5308. DOI: 10.1007/s10854-020-05100-0.
- [21] S. Ahadi, N. S. Moalej, and S. Sheibani, (2019) “Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying" Solid State Sciences 96: 105975. DOI: 10.1016/j.solidstatesciences.2019.105975.
- [22] A. N. El-Shazly, A. H. Hegazy, E. T. El Shenawy, M. A. Hamza, and N. K. Allam, (2021) “Novel facetengineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production" Solar Energy Materials and Solar Cells 220: 110825. DOI: 10.1016/j.solmat.2020.110825.
- [23] D. Komaraiah, E. Radha, N. Kalarikkal, J. Sivakumar, M. V. Ramana Reddy, and R. Sayanna, (2019) “Structural, optical and photoluminescence studies of solgel synthesized pure and iron doped TiO2 photocatalysts" Ceramics International 45(18): 25060–25068. DOI: 10.1016/j.ceramint.2019.03.170.
- [24] M. L. Matias, A. Pimentel, A. S. Reis-Machado, J. Rodrigues, J. Deuermeier, E. Fortunato, R. Martins, and D. Nunes, (2022) “Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purification" Nanomaterials 12(6): 1–23. DOI: 10.3390/nano12061005.
- [25] M. Ghorbanpour and A. Feizi, (2019) “Iron-doped TiO2 Catalysts with Photocatalytic Activity" Journal of Water and Environmental Nanotechnology 4(1): 60–66. DOI: 10.22090/jwent.2019.01.006.
- [26] S. S. Sambaza, A. Maity, and K. Pillay, (2020) “Polyaniline-coated TiO2 nanorods for photocatalytic degradation of bisphenol A in water" ACS Omega 5(46): 29642–29656. DOI: 10.1021/acsomega.0c00628.
- [27] X. He, H. Fang, D. J. Gosztola, Z. Jiang, P. Jena, and W.-N. Wang, (2019) “Mechanistic Insight into Photocatalytic Pathways of MIL-100(Fe)/TiO2 Composites" ACS Applied Materials & Interfaces 11(13): 12516–12524. DOI: 10.1021/acsami.9b00223.
- [28] A. A. Isari, A. Payan, M. Fattahi, S. Jorfi, and B. Kakavandi, (2018) “Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2 /rGO): Characterization and feasibility, mechanism and pathway studies" Applied Surface Science 462: 549–564. DOI: 10.1016/j.apsusc.2018.08.133.
- [29] A.-C. Chu, R. S. Sahu, T.-H. Chou, and Y.-J. Shih, (2021) “Magnetic Fe3O4@TiO2 nanocomposites to degrade bisphenol A, one emerging contaminant, under visible and long wavelength UV light irradiation" Journal of Environmental Chemical Engineering 9(4): 105539. DOI: 10.1016/j.jece.2021.105539.
- [30] L. Xu, L. Yang, E. M. Johansson, Y. Wang, and P. Jin, (2018) “Photocatalytic activity and mechanism of bisphenol a removal over TiO2-x/rGO nanocomposite driven by visible light" Chemical Engineering Journal 350: 1043–1055. DOI: 10.1016/j.cej.2018.06.046.
- [31] H. Wang, N. Zhang, G. Cheng, H. Guo, Z. Shen, L. Yang, Y. Zhao, A. Alsaedi, T. Hayat, and X. Wang, (2020) “Preparing a photocatalytic Fe doped TiO2/rGO for enhanced bisphenol A and its analogues degradation in water sample" Applied Surface Science 505: 144640. DOI: 10.1016/j.apsusc.2019.144640.
- [32] G. K. Sukhadeve, S. Y. Janbandhu, R. Kumar, D. H. Lataye, D. D. Ramteke, and R. S. Gedam, (2022) “Visible light assisted photocatalytic degradation of Indigo Carmine dye and NO2 removal by Fe doped TiO2 nanoparticles" Ceramics International 48(19PB): 29121–29135. DOI: 10.1016/j.ceramint.2022.05.053.