Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Pham-Ngoc-My Le1,2, Huyen-Tran Tran1,2, Ngoc-Diem-Trinh Huynh1,2, Triet-Han Ngo1,2, Vinh-Tien Truong1,2, and Minh-Vien Le1,2This email address is being protected from spambots. You need JavaScript enabled to view it. 

1Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam

2Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam


 

Received: May 30, 2023
Accepted: October 2, 2023
Publication Date: October 20, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202406_27(6).0008  


The current research focuses on the synthesis, characterization, photocatalytic activity, and the reusability of Fe-doped- TiO2 photocatalyst. The photocatalyst were successfully synthesized using sol-gel method with different Fe-doping concentrations (0.3, 0.5, 1.0 mol%). The lattice strain induced from XRD data reveals that the more iron content, the more distortions, and imperfections presented in samples. BET results affirmed that doping with iron, the specific surface area were 10% better than that of pristine TiO2. Fe-doping was able to narrow the band gap to 2.69eV, mainly due to the creation of the localized levels of Fe-3d states. Indeed, the photoluminescence (PL) emission intensity of Fe-doped- TiO2 samples decreases with an increase in Fe-dopingconcentration. Under the optimum condition of 1 g.L −1 0.5 mol%Fe-doped-TiO2 catalyst, non-pH-adjusted and 180 min irradiated under simulated natural light, the removal efficiency of BPA 10mg.L−1  reached 92%. Superoxide radical was found to be the dominant species in the photodegradation of BPA by Fe-doped-TiO2. The 0.5 mol%Fe-doped- TiO2 remained stable in the photocatalytic process after repeated use for five consecutive runs, demonstrating the promise potential in the practical environmental remediation applications. This study opens up an alternatives in enhancement of the TiO2 catalytic properties.


Keywords: Fe-doped TiO2, photocatalyst, BPA photodegradation, scavengers, reusability.


  1. [1] Y. Liu and X. B. Lu, (2022) “Chemical recycling to monomers: Industrial Bisphenol-A-Polycarbonates to novel aliphatic polycarbonate materials" Journal of Polymer Science 60(24): 3256–3268. DOI: 10.1002/pol.20220118.
  2. [2] S. Kumar, R. D. Kaushik, and L. P. Purohit, (2022) “ZnO-CdO nanocomposites incorporated with graphene oxide nanosheets for efficient photocatalytic degradation of bisphenol A, thymol blue and ciprofloxacin" Journal of Hazardous Materials 424: 127332. DOI: 10.1016/j.jhazmat.2021.127332.
  3. [3] M. S. H. Akash, S. Rasheed, K. Rehman, M. Imran, and M. A. Assiri, (2023) “Toxicological evaluation of bisphenol analogues: preventive measures and therapeutic interventions" RSC advances 13(31): 21613–21628. DOI: 10.1039/D3RA04285E.
  4. [4] N.-D. Pham, N. H. Thao, V. H. Luan, H. A. Hoang, S. Sagadevan, M.-T. Ngo, N. N. H. Duong, and M.-V. Le, (2023) “Photocatalytic disinfection of E. coli using silver-doped TiO2 coated on cylindrical cordierite honeycomb monolith photoreactor under artificial sunlight irradiation" Topics in Catalysis 66(1-4): 75–88. DOI: 10.1007/s11244-022-01700-8.
  5. [5] N. Q. D. Vo, N. D. T. Huynh, M. V. Le, K. D. Vo, and D.-V. N. Vo, (2020) “Fabrication of Ag-photodeposited TiO2/cordierite honeycomb monolith photoreactors for 2-naphthol degradation" Journal of Chemical Technology & Biotechnology 95(10): 2628–2637. DOI: 10.1002/jctb.6502.
  6. [6] C. Malengreaux, S. L. Pirard, G. Léonard, J. G. Mahy, M. Herlitschke, B. Klobes, R. P. Hermann, B. Heinrichs, and J. R. Bartlett, (2017) “Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing" Journal of Alloys and Compounds 691: 726–738. DOI: 10.1016/j.jallcom.2016.08.211.
  7. [7] M. Mousavi, M. Soleimani, M. Hamzehloo, A. Badiei, and J. B. Ghasemi, (2021) “Photocatalytic degradation of different pollutants by the novel gCN-NS/Black-TiO2 heterojunction photocatalyst under visible light: Introducing a photodegradation model and optimization by response surface methodology (RSM)" Materials Chemistry and Physics 258: 123912. DOI: 10.1016/j.matchemphys.2020.123912.
  8. [8] H. Hu, D. Qian, P. Lin, Z. Ding, and C. Cui, (2020) “Oxygen vacancies mediated in-situ growth of noble-metal (Ag, Au, Pt) nanoparticles on 3D TiO2 hierarchical spheres for efficient photocatalytic hydrogen evolution from water splitting" International Journal of Hydrogen Energy 45(1): 629–639. DOI: 10.1016/j.ijhydene.2019.10.231.
  9. [9] C. Abraham and L. G. Devi, (2022) “Incorporation of Fe3+ ions into the W6+ and N3- doped TiO2: Exploration of crucial role of Fe3+ dopant ion and correlation of adsorption characteristics with reaction dynamics" Surface Science 717: 121986. DOI: /10.1016/j.susc.2021.121986.
  10. [10] W. Choi, H. Park, and M. R. Hoffmann, (2010) “Effects of Single Metal-Ion Doping on the Visible-Light Photo-reactivity of TiO2" Journal of Physical Chemistry C 114(2): 783–792. DOI: 10.1021/jp908088x.
  11. [11] H. Khan and I. K. Swati, (2016) “Fe3+-doped Anatase TiO2 with d-d Transition, Oxygen Vacancies and Ti3+ Centers: Synthesis, Characterization, UV-vis Photocatalytic and Mechanistic Studies" Industrial and Engineering Chemistry Research 55(23): 6619–6633. DOI: 10.1021/acs.iecr.6b01104.
  12. [12] T. Ali, P. Tripathi, A. Azam, W. Raza, A. S. Ahmed, A. Ahmed, and M. Muneer, (2017) “Photocatalytic performance of Fe-doped TiO2 nanoparticles under visiblelight irradiation" Materials Research Express 4(1): DOI: 10.1088/2053-1591/aa576d.
  13. [13] M. Ismael, (2020) “Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles" Journal of Environmental Chemical Engineering 8(2): 103676. DOI: 10.1016/j.jece.2020.103676.
  14. [14] F. Whba, F. Mohamed, N. R. A. Md Rosli, I. Abdul Rahman, and M. I. Idris, (2021) “The crystalline structure of gadolinium oxide nanoparticles (Gd2O3-NPs) synthesized at different temperatures via X-ray diffraction (XRD) technique" Radiation Physics and Chemistry 179: 109212. DOI: 10.1016/j.radphyschem.2020.109212.
  15. [15] M. V. Le, Q. T. N. Nguyen, N. D. T. Huynh, N. D. Pham, C. H. Truong, H. T. Tran, P. N. M. Le, T. H. Ngo, and H. T. Huynh, (2023) “Direct Z-scheme CoTiO3/gC3N4 nanoparticles: fabrication and application as a photocatalyst for degradation of tetracycline hydrochloride assisted by peroxydisulfate or peroxymonosulfate under simulated sunlight" Nanotechnology for Environmental Engineering 8: 675–690. DOI: 10.1007/s41204-023-00323-y.
  16. [16] N. Q. D. Vo, N. D. T. Huynh, H. T. Huynh, T. H. Ngo, V. H. Luan, H. T. N. Suong, V. H. Nguyen, and M. V. Le, (2021) “TiO2-SiO2 coatings onto cordierite honeycomb monolith support for effective photocatalytic degradation of β-naphthol in a water solution" Materials Letters 302: 130461. DOI: 10.1016/j.matlet.2021.130461.
  17. [17] L.-F. Chiang and R.-A. Doong, (2014) “Cu–TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation" Journal of Hazardous Materials 277: 84–92. DOI: 10.1016/j.jhazmat.2014.01.047.
  18. [18] S. Y. M-Alvarez, J. L. G-Mar, G. T. T-Palomino, F. M. M-Alejandro, A. H. H-Ramírez, and L. H. H-Reyes, (2017) “UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol–gel method during MCPA degradation" Environmental Science and Pollution Research 24(14): 12673–12682. DOI: 10.1007/s11356-016-8034-x.
  19. [19] M. P. B-Vega, J. L. G-Mar, M. V. V-Rodríguez, L. M. M-Treviño, L. L. G-Tovar, A. H. H-Ramírez, and L. H. H-Reyes, (2017) “Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method" Materials Science in Semiconductor Processing 71: 275–282. DOI: 10.1016/j.mssp.2017.08.013.
  20. [20] M. Balakrishnan and R. John, (2021) “Impact of Ni metal ion concentration in TiO2 nanoparticles for enhanced photovoltaic performance of dye sensitized solar Cell" Journal of Materials Science: Materials in Electronics 32(5): 5295–5308. DOI: 10.1007/s10854-020-05100-0.
  21. [21] S. Ahadi, N. S. Moalej, and S. Sheibani, (2019) “Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying" Solid State Sciences 96: 105975. DOI: 10.1016/j.solidstatesciences.2019.105975.
  22. [22] A. N. El-Shazly, A. H. Hegazy, E. T. El Shenawy, M. A. Hamza, and N. K. Allam, (2021) “Novel facetengineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production" Solar Energy Materials and Solar Cells 220: 110825. DOI: 10.1016/j.solmat.2020.110825.
  23. [23] D. Komaraiah, E. Radha, N. Kalarikkal, J. Sivakumar, M. V. Ramana Reddy, and R. Sayanna, (2019) “Structural, optical and photoluminescence studies of solgel synthesized pure and iron doped TiO2 photocatalysts" Ceramics International 45(18): 25060–25068. DOI: 10.1016/j.ceramint.2019.03.170.
  24. [24] M. L. Matias, A. Pimentel, A. S. Reis-Machado, J. Rodrigues, J. Deuermeier, E. Fortunato, R. Martins, and D. Nunes, (2022) “Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purification" Nanomaterials 12(6): 1–23. DOI: 10.3390/nano12061005.
  25. [25] M. Ghorbanpour and A. Feizi, (2019) “Iron-doped TiO2 Catalysts with Photocatalytic Activity" Journal of Water and Environmental Nanotechnology 4(1): 60–66. DOI: 10.22090/jwent.2019.01.006.
  26. [26] S. S. Sambaza, A. Maity, and K. Pillay, (2020) “Polyaniline-coated TiO2 nanorods for photocatalytic degradation of bisphenol A in water" ACS Omega 5(46): 29642–29656. DOI: 10.1021/acsomega.0c00628.
  27. [27] X. He, H. Fang, D. J. Gosztola, Z. Jiang, P. Jena, and W.-N. Wang, (2019) “Mechanistic Insight into Photocatalytic Pathways of MIL-100(Fe)/TiO2 Composites" ACS Applied Materials & Interfaces 11(13): 12516–12524. DOI: 10.1021/acsami.9b00223.
  28. [28] A. A. Isari, A. Payan, M. Fattahi, S. Jorfi, and B. Kakavandi, (2018) “Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2 /rGO): Characterization and feasibility, mechanism and pathway studies" Applied Surface Science 462: 549–564. DOI: 10.1016/j.apsusc.2018.08.133.
  29. [29] A.-C. Chu, R. S. Sahu, T.-H. Chou, and Y.-J. Shih, (2021) “Magnetic Fe3O4@TiO2 nanocomposites to degrade bisphenol A, one emerging contaminant, under visible and long wavelength UV light irradiation" Journal of Environmental Chemical Engineering 9(4): 105539. DOI: 10.1016/j.jece.2021.105539.
  30. [30] L. Xu, L. Yang, E. M. Johansson, Y. Wang, and P. Jin, (2018) “Photocatalytic activity and mechanism of bisphenol a removal over TiO2-x/rGO nanocomposite driven by visible light" Chemical Engineering Journal 350: 1043–1055. DOI: 10.1016/j.cej.2018.06.046.
  31. [31] H. Wang, N. Zhang, G. Cheng, H. Guo, Z. Shen, L. Yang, Y. Zhao, A. Alsaedi, T. Hayat, and X. Wang, (2020) “Preparing a photocatalytic Fe doped TiO2/rGO for enhanced bisphenol A and its analogues degradation in water sample" Applied Surface Science 505: 144640. DOI: 10.1016/j.apsusc.2019.144640.
  32. [32] G. K. Sukhadeve, S. Y. Janbandhu, R. Kumar, D. H. Lataye, D. D. Ramteke, and R. S. Gedam, (2022) “Visible light assisted photocatalytic degradation of Indigo Carmine dye and NO2 removal by Fe doped TiO2 nanoparticles" Ceramics International 48(19PB): 29121–29135. DOI: 10.1016/j.ceramint.2022.05.053.