Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Vibha Pratap1This email address is being protected from spambots. You need JavaScript enabled to view it., Amit Prakash Singh2

1USICT, GGSIPU, New Delhi, India and IGDTUW, Delhi, India

2USICT, GGSIPU, New Delhi, India


 

Received: June 24, 2023
Accepted: August 21, 2023
Publication Date: September 27, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202404_27(4).0010  


The class imbalance is an important topic of research as imbalance exists in many applications where the presence of one type of sample is significantly greater than that of another type. To overcome binary class imbalance problems, a hybrid under-sampling approach based on k-mean clustering and pseudo-oversampling is proposed. Random Over-Sampling Examples (ROSE) aids in re-balancing an imbalanced dataset by creating minority samples using a smooth bootstrap method, and k-means clustering is used for better sample selection as each cluster contains examples having similar characteristics. It reduces the chance of elimination of useful majorityclass samples. For performance evaluation, 25 publicly available imbalanced datasets are collected from the KEEL repository. The proposed method improves classification results in terms of sensitivity, specificity, G-mean, F-measure, balance accuracy, and accuracy as compared to three state of art clustering-based undersampling methods SBC, KMUS, and OBU. The experimental results of this research can be used in the classification of various domains, such as medical diagnosis, banking fraud detection, anomaly detection, etc, which are generally imbalanced.


Keywords: Class imbalance, k-means, oversampling, ROSE, under-sampling


  1. [1] M. M. R. Henein, D. M. Shawky, and S. K. Abd-ElHafiz, (2018) “Clustering-based Under-sampling for Software Defect Prediction" Proceedings of the 13th International Conference on Software Technologies: 219–227. DOI: 10.5220/0006911402190227.
  2. [2] Y. SUN, A. K. C. WONG, and M. S. KAMEL, (2009) “CLASSIFICATION OF IMBALANCED DATA: A REVIEW" International Journal of Pattern Recognition and Artificial Intelligence 23: 687–719. DOI: 10.1142/S0218001409007326.
  3. [3] M. Wang, X. Yao, and Y. Chen, (2021) “An ImbalancedData Processing Algorithm for the Prediction of Heart Attack in Stroke Patients" IEEE Access 9: 25394–25404.
  4. [4] Vibha and A. P. Singh. Analysis of Variants of KNN Algorithm based on Preprocessing Techniques. IEEE, 2018, 186–191. DOI: 10.1109/ICACCCN.2018.8748429.
  5. [5] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem. 2009, 475–482. DOI: 10.1007/978- 3-642-01307-2_43.
  6. [6] A. Ali, S. M. Shamsuddin, and A. L. Ralescu, (2015) “Classification with class imbalance problem: A review" International Journal of Advances in Soft Computing and its Applications 7(3): 176–204.
  7. [7] D. Devi, S. K. Biswas, and B. Purkayastha. “A Review on Solution to Class Imbalance Problem: Undersampling Approaches”. In: IEEE, 2020, 626–631.
  8. [8] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, (2017) “Learning from classimbalanced data: Review of methods and applications" Expert Systems with Applications 73: 220–239. DOI: 10.1016/j.eswa.2016.12.035.
  9. [9] W.-C. Lin, C.-F. Tsai, Y.-H. Hu, and J.-S. Jhang, (2017) “Clustering-based undersampling in class-imbalanced data" Information Sciences 409-410: 17–26.
  10. [10] F. Rayhan, S. Ahmed, A. Mahbub, R. Jani, S. Shatabda, and D. M. Farid. “CUSBoost: ClusterBased Under-Sampling with Boosting for Imbalanced Classification”. In: IEEE, 2017, 1–5. DOI: 10.1109/CSITSS.2017.8447534.
  11. [11] V. Pratap and A. P. Singh, (2023) “Novel fuzzy clustering-based undersampling framework for class imbalance problem" International Journal of System Assurance Engineering and Management 14: 967–976. DOI: 10.1007/s13198-023-01897-1.
  12. [12] B. Das, N. C. Krishnan, and D. J. Cook. “Handling Imbalanced and Overlapping Classes in Smart Environments Prompting Dataset”. In: 2014, 199–219.
  13. [13] M. M. Rahman and D. N. Davis. “Cluster based under-sampling for unbalanced cardiovascular data”. In: 3 LNECS. 2013.
  14. [14] A. Rodriguez and A. Laio, (2014) “Clustering by fast search and find of density peaks" Science 344: 1492–1496. DOI: 10.1126/science.1242072.
  15. [15] S.-J. Yen and Y.-S. Lee, (2009) “Cluster-based undersampling approaches for imbalanced data distributions" Expert Systems with Applications 36: 5718–5727. DOI: 10.1016/j.eswa.2008.06.108.
  16. [16] P. Vuttipittayamongkol, E. Elyan, A. Petrovski, and C. Jayne. “Overlap-Based Undersampling for Improving Imbalanced Data Classification”. In: 2018, 689– 697. DOI: 10.1007/978-3-030-03493-1_72.
  17. [17] Y. Liu, Y. Liu, B. X. Yu, S. Zhong, and Z. Hu, (2023) “Noise-robust oversampling for imbalanced data classification" Pattern Recognition 133: 109008. DOI: 10.1016/j.patcog.2022.109008.
  18. [18] N. Lunardon, G. Menardi, and N. Torelli, (2014) “ROSE: a Package for Binary Imbalanced Learning" The R Journal 6: 79. DOI: 10.32614/RJ-2014-008.
  19. [19] J. A. Hartigan and M. A. Wong, (1979) “Algorithm AS 136: A K-Means Clustering Algorithm" Applied Statistics 28: 100. DOI: 10.2307/2346830.
  20. [20] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, (2002) “SMOTE: Synthetic Minority Oversampling Technique" Journal of Artificial Intelligence Research 16: 321–357. DOI: 10.1613/jair.953.
  21. [21] H. Han, W.-Y. Wang, and B.-H. Mao. “BorderlineSMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning”. In: 2005, 878–887.
  22. [22] H. He, Y. Bai, E. A. Garcia, and S. Li. “ADASYN: Adaptive synthetic sampling approach for imbalanced learning”. In: IEEE, 2008, 1322–1328.
  23. [23] S. Barua, M. M. Islam, X. Yao, and K. Murase, (2014) “MWMOTE–Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning" IEEE Transactions on Knowledge and Data Engineering 26: 405–425. DOI: 10.1109/TKDE.2012.232.
  24. [24] D. L. Wilson, (1972) “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data" IEEE Transactions on Systems, Man, and Cybernetics SMC-2: 408–421.
  25. [25] M. Kubat and S. Matwin. “Addressing the curse of imbalanced training sets: one-sided selectio”. In: 1997.
  26. [26] P. Hart, (1968) “The condensed nearest neighbor rule (Corresp.)" IEEE Transactions on Information Theory 14: 515–516. DOI: 10.1109/TIT.1968.1054155.
  27. [27] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, (2004) “A study of the behavior of several methods for balancing machine learning training data" ACM SIGKDD Explorations Newsletter 6: 20–29. DOI: 10.1145/1007730.1007735.
  28. [28] M. Koziarski. “CSMOUTE: Combined Synthetic Oversampling and Undersampling Technique for Imbalanced Data Classification”. In: IEEE, 2021, 1–8.
  29. [29] K. Veropoulos, C. Campbell, N. Cristianini, et al., (1999) “Controlling the sensitivity of support vector machines" Proceedings of the international joint conference on artificial intelligence:
  30. [30] R. Barandela, J. Sánchez, V. Garcıa, and E. Rangel, (2003) “Strategies for learning in class imbalance problems" Pattern Recognition 36: 849–851.
  31. [31] C. Drummond, R. C. Holte, et al. “C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling”. In: 11. 2003.
  32. [32] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, (2006) “Handling imbalanced datasets : A review" Science 30:
  33. [33] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, (2007) “Cost-sensitive boosting for classification of imbalanced data" Pattern Recognition 40: 3358–3378.
  34. [34] K. L. Chong, Y. F. Huang, C. H. Koo, M. Sherif, A. N. Ahmed, and A. El-Shafie, (2023) “Investigation of crossentropy-based streamflow forecasting through an efficient interpretable automated search process" Applied Water Science 13: 6. DOI: 10.1007/s13201-022-01790-5.
  35. [35] Y. Freund and R. E. Schapire, (1996) “Experiments with a New Boosting Algorithm" Proceedings of the 13th International Conference on Machine Learning:
  36. [36] X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou. “On the Class Imbalance Problem”. In: IEEE, 2008, 192–201. DOI: 10.1109/ICNC.2008.871.
  37. [37] S. Wang and X. Yao. “Diversity analysis on imbalanced data sets by using ensemble models”. In: IEEE, 2009, 324–331. DOI: 10.1109/CIDM.2009.4938667.
  38. [38] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. “SMOTEBoost: Improving Prediction of the Minority Class in Boosting”. In: 2003, 107–119.
  39. [39] C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano, (2010) “RUSBoost: A Hybrid Approach to Alleviating Class Imbalance" IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 40: 185–197.
  40. [40] H. Hartono, O. S. Sitompul, T. Tulus, and E. B. Nababan, (2018) “Biased support vector machine and weightedsmote in handling class imbalance problem" International Journal of Advances in Intelligent Informatics 4: 21. DOI: 10.26555/ijain.v4i1.146.
  41. [41] S. Ahmed, F. Rayhan, A. Mahbub, M. R. Jani, S. Shatabda, and D. M. Farid. “LIUBoost: Locality Informed Under-Boosting for Imbalanced Data Classification”. In: 2019, 133–144. DOI: 10.1007/978-981-13- 1498-8_12.
  42. [42] D. Chen, X.-J. Wang, C. Zhou, and B. Wang, (2019) “The Distance-Based Balancing Ensemble Method for Data With a High Imbalance Ratio" IEEE Access 7: 68940–68956.
  43. [43] N. AlDahoul, A. N. Ahmed, M. F. Allawi, M. Sherif, A. Sefelnasr, K.-w. Chau, and A. El-Shafie, (2022) “A comparison of machine learning models for suspended sediment load classification" Engineering Applications of Computational Fluid Mechanics 16: 1211–1232. DOI: 10.1080/19942060.2022.2073565.
  44. [44] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, (2012) “A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches" IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42: 463–484. DOI: 10.1109/TSMCC.2011.2161285.
  45. [45] N. Matloff. The art of R programming: A tour of statistical software design. No Starch Press, 2011.
  46. [46] E. Elyan and M. M. Gaber, (2016) “A fine-grained Random Forests using class decomposition: an application to medical diagnosis" Neural Computing and Applications 27: 2279–2288.
  47. [47] J. Derrac, S. Garcia, L. Sanchez, and F. Herrera, (2015) “Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework" J. Mult. Valued Log. Soft Comput 17: 255–287