Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Aryanti Karlina Nurendyastuti1This email address is being protected from spambots. You need JavaScript enabled to view it., Mohammad Bagus Adityawan2,5,7, Muhammad Rizki Purnama3, Mohammad Sigit Arifianto4, Mohammad Farid5,7, Arno Adi Kuntoro2,6, Widyaningtias2,7, Mochamad Mardi Marta Dinata8, Arumjeni Mitayani8

1Graduate School of Civil Engineering, Institut Teknologi Bandung, 40132, Indonesia

2Department of Water Resources Engineering and Management, Institut Teknologi Bandung, 45363, Indonesia

3Department of Civil Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan

4Radio Telecomunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, 40132, Indonesia

5Center for Coastal and Marine Development, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, 40132, Indonesia

6Graduate School of Water Resources Management, Institut Teknologi Bandung, 40132, Indonesia

7Center for Water Resources Development, Institut Teknologi Bandung, 40132, Indonesia

8Research Center for Telecommunications, National Research and Innovation Agency, Indonesia


Received: November 16, 2022
Accepted: April 6, 2023
Publication Date: September 20, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  

Indonesia, located in the zone of “Ring of Fire,” has a high tsunami risk, specifically from those induced by earthquakes. The 2004 Aceh Tsunami and the 2006 Pangandaran Tsunami demonstrated that tsunamis could cause major damage to coastal areas. The Indonesian Tsunami Early Warning System (Ina-TEWS) typically relies on buoys connected to satellites, transmitting information about 5 minutes after the tsunami earthquake begins. Though Indonesia relies on this system, many buoys have gone missing, emphasizing the need for a faster and more reliable backup early warning system. This study proposes a new early warning system by integrating maritime wireless communication between vessels in the open sea and coastal radio stations in the Pangandaran coastal area by using VHF and HF radio communication systems. 200 Gross Tonnage (GT) fishing vessels equipped with the VHF radio communication system are used for the first signal propagation option. The HF radio communication system is applied as a second option, for when there is a hop number limit. Three scenarios of tsunami numerical modeling were carried out using Delft3D and Delft Dashboard based on the earthquake and fault parameters from PUSGEN. The output from this study is the propagation time of VHF and HF signals of the early warning system for each scenario, which was less than 1 minute. The development of an early warning system based on maritime wireless communication is expected to be a part of Indonesia’s tsunami mitigation system in place of buoys.

Keywords: Tsunami; Delft3D; Maritime wireless communication; VHF; HF

  1. [1] F. Imamura, S. P. Boret, A. Suppasri, and A. Muhari, (2019) “Recent occurrences of serious tsunami damage and the future challenges of tsunami disaster risk reduction" Progress in Disaster Science 1: 100009. DOI: 10.1016/J.PDISAS.2019.100009.
  2. [2] J. C. Gaillard, E. Clavé, and I. Kelman, (2008) “Wave of peace? Tsunami disaster diplomacy in Aceh, Indonesia" Geoforum 39(1): 511–526. DOI: 10.1016/J.GEOFORUM.2007.10.010.
  3. [3] P. Subardjo, S. Saputro, and S. A. Aeda, (2017) “Simulation of tsunami wave propagation and run-up at pangandaran bay, West Java" International Journal of Marine and Aquatic Resource Conservation and Coexistence 2(1): 31–37. DOI: 10.14710/IJMARCC.2.1.P.
  4. [4] P. S. G. N. (Indonesia) and P. P. dan Pengembangan Perumahan dan Permukiman (Indonesia). Peta sumber dan bahaya gempa Indonesia tahun 2017.
  5. [5] Tursina and Syamsidik, (2019) “Reconstruction of the 2004 Tsunami Inundation Map in Banda Aceh Through Numerical Model and Its Validation with Post-Tsunami Survey Data" IOP Conference Series: Earth and Environmental Science 273(1): 012008. DOI: 10.1088/1755-1315/273/1/012008.
  6. [6] S. Reese, W. J. Cousins, W. L. Power, N. G. Palmer, I. G. Tejakusuma, and S. Nugrahadi. Natural Hazards and Earth System Sciences Tsunami vulnerability of buildings and people in South Java-field observations after the July 2006 Java tsunami. 7. 2007.
  7. [7] F. Lavigne, C. Gomez, M. Giffo, P. Wassmer, C. Hoebreck, D. Mardiatno, J. Prioyono, R. Paris, a. Field, and R. Paris. Field observations of the Tsunami in Java Natural Hazards and Earth System Sciences Tsunami in Java. 7. 1. 2006.
  8. [8] A. Suppasri, N. Leelawat, P. Latcharote, V. Roeber, K. Yamashita, A. Hayashi, H. Ohira, K. Fukui, A. Hisamatsu, D. Nguyen, and F. Imamura, (2017) “The 2016 Fukushima earthquake and tsunami: Local tsunami behavior and recommendations for tsunami disaster risk reduction" International Journal of Disaster Risk Reduction 21: 323–330. DOI: 10.1016/J.IJDRR.2016.12.016.
  9. [9] A. Raby, J. Macabuag, A. Pomonis, S. Wilkinson, and T. Rossetto, (2015) “Implications of the 2011 Great East Japan Tsunami on sea defence design" International Journal of Disaster Risk Reduction 14: 332–346. DOI: 10.1016/J.IJDRR.2015.08.009.
  10. [10] N. Leelawat, A. Suppasri, and F. Imamura, (2015) “Disaster Recovery and Reconstruction Following the 2011 Great East Japan Earthquake and Tsunami: A Business Process Management Perspective" International Journal of Disaster Risk Science 6(3): 310–314. DOI: 10.1007/S13753-015-0066-1/FIGURES/1.
  11. [11] A. Mitayani, G. N. Nurkahfi, M. Mardi, M. Dinata, V. A. Mardiana, C. Bin, A. Wael, and N. Armi. “Performance Analysis of Channel Effect on NC-OFDM Maritime Communication System in Indonesia Seas”. In: International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). 2019, 135–138.
  12. [12] T. Piltzecker and B. Posey, (2008) “Configuring File and Print Services" The Best Damn Windows Server 2008 Book Period: 403–475. DOI: 10.1016/B978-1-59749-273-7.00007-0.
  13. [13] T. D. Ta, T. D. Tran, D. D. Do, H. V. Nguyen, Y. V. Vu, and N. X. Tran, (2011) “GPS-based wireless ad hoc network for marine monitoring, search and rescue (MSnR)" Proceedings - 2011 2nd International Conference on Intelligent Systems, Modelling and Simulation, ISMS 2011: 350–354. DOI: 10.1109/ISMS.2011.60.
  14. [14] A. K. Nurendyastuti, M. M. M. Dinata, A. Mitayani, M. R. Purnama, M. B. Adityawan, M. Farid, A. A. Kuntoro, and Widyaningtias, (2022) “Tsunami Early Warning System Based on Maritime Wireless Communication" Journal of the Civil Engineering Forum: 115–124. DOI: 10.22146/jcef.2878.
  15. [15] S. N. Ward, (2001) “Landslide tsunami" Journal of Geophysical Research: Solid Earth 106(B6): 11201– 11215. DOI: 10.1029/2000JB900450.
  16. [16] N. W. Service. National Weather Service - Tsunami Hazards.
  17. [17] D. Jin and J. Lin, (2011) “Managing tsunamis through early warning systems: A multidisciplinary approach": DOI: 10.1016/j.ocecoaman.2010.10.025.
  18. [18] W. Erlangga, (2020) “Karakteristik dan parameter subduksi sumber gempa pulau jawa" Teknisia XXV(2): 88–98. DOI: 10.20885/TEKNISIA.VOL25.ISS2.ART4.
  19. [19] K. K. S. Thingbaijam, P. M. Mai, and K. Goda, (2017) “New Empirical Earthquake Source-Scaling Laws" Bulletin of the Seismological Society of America 107(5): 2225–2246. DOI: 10.1785/0120170017.
  20. [20] Permenhub No. 7 Tahun 2019 tentang Pemasangan dan Pengaktifan Sistem Identifikasi Otomatis bagi Kapal yang Berlayar di wilayah Perairan Indonesia.
  21. [21] Permen KKP No. 58/PERMEN-KP/2020 Tahun 2020 tentang Usaha Perikanan Tangkap [JDIH BPK RI].
  22. [22] A. F. R. Prabowo, H. Yudo, and M. Iqbal, (2016) “Analisa kekuatan poros kemudi kapal penampung ikan tradisional 200 gt kabupaten batang dengan metode elemen hingga" Jurnal Teknik Perkapalan 4(3):
  23. [23] K. P. Republik Indonesia. Keputusan direktur jenderal perhubungan laut nomor kp.287/djpl/2020 tentang petunjuk teknis standarisasi peralatan vessel traffic services (vts) dan stasiun radio pantai (srop) pada distrik navigasi. 2020.
  24. [24] H. Judawisastra; ET 4030 Antena & Propagasi Gelombang. 1st ed. Bandung: ITB Research, 2012.
  25. [25] C. Type, “Coaxial Cable Attenuation Charts RF Elektronik This email address is being protected from spambots. You need JavaScript enabled to view it." (2):
  26. [26] S. Ford and A. R. R. League. ARRL’s VHF digital handbook. American Radio Relay League, 2008.
  27. [27] A. H. Mohammad, X. Hong, M. A. Islam, and K. Zunnurhain, (2010) “Delay analysis of wireless ad hoc networks: Single vs. multiple radio" Proceedings - Conference on Local Computer Networks, LCN: 814–820. DOI: 10.1109/LCN.2010.5735817.
  28. [28] H. C. R. C. Division. Radio Communications: In the Digital Age. HF technology, Volume 1. 2nd ed. Harris, 2005.
  29. [29] M. R. Purnama, M. B. Adityawan, M. Farid, A. Chrysanti, B. T. Rayadi, and Y. Suryadi, (2021) “Development of tsunami inundation map for the coast of Palu City" IOP Conference Series: Earth and Environmental Science 737(1): 012049. DOI: 10.1088/1755-1315/737/1/012049.
  30. [30] Fachrurrazi, Syamsidik, M. Al’Ala, and W. Mahardi, (2017) “Numerical simulations of tsunami waves impacts on Ulee Lheue Harbour in Banda Aceh-Indonesia" IOP Conference Series: Earth and Environmental Science 56(1): 012015. DOI: 10.1088/1755-1315/56/1/012015.
  31. [31] A. Apotsos, M. Buckley, G. Gelfenbaum, B. Jaffe, and D. Vatvani, (2011) “Nearshore Tsunami Inundation Model Validation: Toward Sediment Transport Applications" Pure and Applied Geophysics 168(11): 2097–2119. DOI: 10.1007/S00024-011-0291-5.



60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.