1.30

Impact Factor

2.10

CiteScore

# Enlightenment Of Heat Diffusion Using New Homotopy Perturbation Method

Kapil Pal1This email address is being protected from spambots. You need JavaScript enabled to view it., V. G. Gupta2, Hoshiyar Singh1, Vatsala Pawar1

1Jaipur National University, Jagatpura, Jaipur, Rajasthan

2University of Rajasthan, J. L. N. Marg, Jaipur, Rajasthan

Accepted: January 3, 2023
Publication Date: August 25, 2023

Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

In this research paper, we obtained the analytic exact solution of time dependent nonhomogeneous onedimensional heat conduction equation by using new homotopy perturbation method. The obtained solution of heat diffusion equation was explained graphically using MATLAB. The numerical values of the solution of Heat equation are shown in a table. The novelty of the procedure is that it does no longer require small parameter in an equation and obtain the analytical solution without converting the problem into homogeneous boundary condition. We concluded that the solution of nonlinear and linear differential equation can be received through using new homotopy perturbation method. Conclusion of this study have super utility in the discipline of engineering, mathematics, biomedical and many others.

Keywords: Nonlinear equation; Heat diffusion; New homotopy perturbation method; boundary and initial conditions

1. [1] S. Li and S.-J. Liao, (2005) “An analytic approach to solve multiple solutions of a strongly nonlinear problem" Applied mathematics and computation 169(2): 854–865. DOI: 10.1016/j.amc.2004.09.066.
2. [2] J. He, (1997) “A new approach to nonlinear partial differential equations" Communications in Nonlinear Science and Numerical Simulation 2(4): 230–235. DOI: 10.1016/S1007-5704(97)90007-1.
3. [3] J.-H. He, (1999) “Homotopy perturbation technique" Computer Methods in Applied Mechanics and Engineering 178(3-4): 257–262. DOI: 10.1016/S0045-7825(99)00018-3.
4. [4] J.-H. He, (2000) “A coupling method of a homotopy technique and a perturbation technique for non-linear problems" International Journal of Non-Linear Mechanics 35(1): 37–43. DOI: 10.1016/S0020-7462(98)00085-7.
5. [5] J.-H. He, (2003) “Homotopy perturbation method: a new nonlinear analytical technique" Applied Mathematics and Computation 135(1): 73–79. DOI: 10.1016/S0096-3003(01)00312-5.
6. [6] J.-H. He, (2006) “Homotopy perturbation method for solving boundary value problems" Physics Letters A 350(1-2): 87–88. DOI: 10.1016/j.physleta.2005.10.005.
7. [7] J.-H. He, (2006) “Some Asymptotic Methods for Strongly Nonlinear Equations" International Journal of Modern Physics B 20(10): 1141–1199. DOI: 10.1142/S0217979206033796.
8. [8] J.-H. He, (2006) “Addendum:. New Interpretation of Homotopy Perturbation Method" International Journal of Modern Physics B 20(18): 2561–2568. DOI: 10.1142/S0217979206034819.
9. [9] J. Biazar and M. Eslami, (2011) “A new homotopy perturbation method for solving systems of partial differential equations" Computers & Mathematics with Applications 62(1): 225–234. DOI: 10.1016/j.camwa.2011.04.070.
10. [10] H. Aminikhah, (2012) “The combined Laplace transform and new homotopy perturbation methods for stiff systems of ODEs" Applied Mathematical Modelling 36(8): 3638–3644. DOI: 10.1016/j.apm.2011.10.014.
11. [11] D. K. Maurya, R. Singh, and Y. K. Rajoria, (2019) “A Mathematical Model to Solve the Burgers-Huxley Equation by using New Homotopy Perturbation Method" International Journal of Mathematical, Engineering and Management Sciences 4(6): 1483–1495. DOI: 10.33889/IJMEMS.2019.4.6-117.
12. [12] M. R. Gad-Allah and T. M. Elzaki, (2018) “Application of New Homotopy Perturbation Method for Solving Partial Differential Equations" Journal of Computational and Theoretical Nanoscience 15(2): 500–508. DOI: 10.1166/jctn.2018.6725.
13. [13] A. Demir, S. Erman, B. Özgür, and E. Korkmaz, (2013) “Analysis of the new homotopy perturbation method for linear and nonlinear problems" Boundary Value Problems 2013(1): 61. DOI: 10.1186/1687-2770-2013-61.
14. [14] S.-J. Liao, (1995) “An approximate solution technique not depending on small parameters: A special example" International Journal of Non-Linear Mechanics 30(3): 371–380. DOI: 10.1016/0020-7462(94)00054-E.
15. [15] S. Liao. Homotopy Analysis Method in Nonlinear Differential Equations. en. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-25132-0.
16. [16] S. Liao, (2004) “On the homotopy analysis method for nonlinear problems" Applied Mathematics and Computation 147(2): 499–513. DOI: 10.1016/S0096-3003(02)00790-7.
17. [17] M. Mirzazadeh and Z. Ayati, (2016) “New homotopy perturbation method for system of Burgers equations" Alexandria Engineering Journal 55(2): 1619–1624. DOI: 10.1016/j.aej.2016.02.003.
18. [18] A. Rajabi, D. Ganji, and H. Taherian, (2007) “Application of homotopy perturbation method in nonlinear heat conduction and convection equations" Physics Letters A 360(4-5): 570–573. DOI: 10.1016/j.physleta.2006.08.079.
19. [19] R. Shanthi, T. Iswarya, J. Visuvasam, L. Rajendran, and M. E. Lyons, (2022) “Voltammetric and Mathematical Analysis of Adsorption of Enzymes at Rotating Disk Electrode" International Journal of Electrochemical Science 17(4): 220433. DOI: 10.20964/2022.04.15.
20. [20] N. Gupta and N. Kanth, (2021) “A comparative study of new homotopy perturbation method and finite difference method for solving unsteady heat conduction equation" Journal of the Serbian Society for Computational Mechanics 15(1): 98–109. DOI: 10.24874/jsscm.2021.15.01.07.
21. [21] A. H. Nayfeh and D. T. Mook. Non-Linear Oscillations. English. New York: John Wily & Sons, 1979.
22. [22] C. Nash and S. Sen. Topology and Geometry for physicists. London: Academic Press, 1983.
23. [23] R. Herman. Introduction to Partial Differential Equations. California State University: LibreTexts, 2015.

2.1
2023CiteScore

69th percentile