Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

V. C. ShewaleThis email address is being protected from spambots. You need JavaScript enabled to view it., A. A. Kapse, S. P. Mogal

Department of Mechanical Engineering, MVPS’s KBT College of Engineering, Nashik, India


 

Received: April 2, 2022
Accepted: June 26, 2023
Publication Date: August 17, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202403_27(3).0006  


In this study the performance analysis of ice plant is carried out experimentally for different concentration (0.2%, 0.3% and 0.4%) of TiO2 with (POE) lubricant using R-134a as a primary refrigerant in to the system. The performance analysis is carried out based on the parameters such as temperature of brine, pressure ratio, compressor work, refrigerating effect and COP. The pressure and temperature readings are recorded by using the pressure gauge and thermocouples fitted in the test rig for the analysis. The properties of refrigerant are recorded by using the LABVIEW software in computerised test rig. In this analysis it was observed that the minimum compressor work and maximum COP found at 0.4% concentration of TiO2 compared to other concentration. At 0.4% concentration of TiO2 nanoparticles, the efficacy was found to be superior to that of a mixture of R134a and pure lubricant, consuming 16.3% less compressor power and increasing COP by 34.2%. But the thermal conductivity and the density, of the mixture of R134a and nanolubricant are observed higher in comparison with the mixture of R134a and pure lubricant and are increases with increasing the concentration of TiO2.


Keywords: Ice plant, Concentration of TiO2, R-134a, Coefficient of performance


  1. [1] S.-s. Bi, L. Shi, and L.-l. Zhang, (2008) “Application of nanoparticles in domestic refrigerators" Applied Thermal Engineering 28(14-15): 1834–1843. DOI: 10.1016/ j.applthermaleng.2007.11.018.
  2. [2] N. Subramani and M. J. Prakash, (2011) “Experimental studies on a vapour compression system using nanorefrigerants" International Journal of Engineering, Science and Technology 3(9): 95–102. DOI: 10.4314/ijest.v3i9.
  3. [3] S. Bi, K. Guo, Z. Liu, and J. Wu, (2011) “Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid" Energy Conversion and Management 52(1): 733–737. DOI: 10.1016/j.enconman.2010.07.052.
  4. [4] R. K. Sabareesh, N. Gobinath, V. Sajith, S. Das, and C. Sobhan, (2012) “Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems–An experimental investigation" international journal of refrigeration 35(7): 1989–1996. DOI: 10.1016/j.ijrefrig.2012.07.002.
  5. [5] O. S. Ohunakin, D. S. Adelekan, T. O. Babarinde, R. O. Leramo, F. I. Abam, and C. D. Diarra, (2017) “Experimental investigation of TiO2-, SiO2-and Al2O3- lubricants for a domestic refrigerator system using LPG as working fluid" Applied Thermal Engineering 127: 1469–1477. DOI: 10.1016/j.applthermaleng.2017.08.153.
  6. [6] S. S. Chauhan, R. Kumar, and S. Rajput, (2019) “Performance investigation of ice plant working with R134a and different concentrations of POE/TiO 2 nanolubricant using experimental method" Journal of the Brazilian Society of Mechanical Sciences and Engineering 41: 1–10. DOI: 10.1007/s40430-019-1657-3.
  7. [7] F. Javadi and R. Saidur, (2013) “Energetic, economic and environmental impacts of using nanorefrigerant in domestic refrigerators in Malaysia" Energy Conversion and Management 73: 335–339. DOI: 10.1016/j.enconman. 2013.05.013.
  8. [8] D. S. Adelekan, O. S. Ohunakin, T. O. Babarinde, M. K. Odunfa, R. O. Leramo, S. O. Oyedepo, and D. C. Badejo, (2017) “Experimental performance of LPG refrigerant charges with varied concentration of TiO2 nanolubricants in a domestic refrigerator" Case Studies in Thermal Engineering 9: 55–61. DOI: 10.1016/j.csite.2016.12.002.
  9. [9] V. M. V. Padmanabhan and S. Palanisamy, (2012) “The use of TiO2 nanoparticles to reduce refrigerator irreversibility" Energy Conversion and Management 59: 122–132. DOI: 10.1016/j.enconman.2012.03.002.
  10. [10] I. Mahbubul, A. Saadah, R. Saidur, M. Khairul, and A. Kamyar, (2015) “Thermal performance analysis of Al2O3/R-134a nanorefrigerant" International Journal of heat and Mass transfer 85: 1034–1040. DOI: 10.1016/j.ijheatmasstransfer.2015.02.038.
  11. [11] N. Zawawi, W. Azmi, A. Redhwan, M. Sharif, and K. Sharma, (2017) “Thermo-physical properties of Al2O3- SiO2/PAG composite nanolubricant for refrigeration system" international journal of refrigeration 80: 1–10. DOI: 10.1016/j.ijrefrig.2017.04.024.
  12. [12] D. Sendil Kumar and R. Elansezhian, (2014) “ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment" Frontiers of Mechanical Engineering 9: 75–80. DOI: 10.1007/s11465-014-0285-y.
  13. [13] R. Wang, Q. Wu, and Y. Wu, (2010) “Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants" Energy and Buildings 42(11): 2111–2117. DOI: 10.1016/j.enbuild.2010.06.023.
  14. [14] M. Sharif, W. Azmi, A. Redhwan, R. Mamat, and T. Yusof, (2017) “Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system" international journal of refrigeration 75: 204–216. DOI: 10.1016/j.ijrefrig.2017.01.004.
  15. [15] H. Li, W. Yang, Z. Yu, and L. Zhao, (2015) “The performance of a heat pump using nanofluid (R22+ TiO2) as the working fluid–an experimental study" Energy Procedia 75: 1838–1843. DOI: 10.1016/j.egypro.2015.07.158.
  16. [16] M. R Abdel Hady, M. Salem Ahmed, et al., (2018) “Evaluation the Performance of Chilled-Water Air Conditioning Unit Using Alumina Nano Fluids" Journal of Pharmaceutical and Applied Chemistry 4(1): 44–52. DOI: 10.18576/JPAC/040206.
  17. [17] S. S. Chauhan, R. Kumar, and S. Rajput, (2019) “Performance investigation of ice plant working with R134a and different concentrations of POE/TiO 2 nanolubricant using experimental method" Journal of the Brazilian Society of Mechanical Sciences and Engineering 41: 1–10. DOI: 10.1007/s40430-019-1657-3.
  18. [18] S. S. Botha, P. Ndungu, and B. J. Bladergroen, (2011) “Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica" Industrial & Engineering Chemistry Research 50(6): 3071–3077. DOI: 10.1021/ie101088x.
  19. [19] D. S. Kumar and R. Elansezhian, (2012) “Experimental study on Al2O3-R134a nano refrigerant in refrigeration system" International Journal of Modern Engineering Research 2(5): 3927–3929.
  20. [20] D. Adelekan, O. Ohunakin, J. Gill, O. Atiba, I. Okokpujie, and A. Atayero, (2019) “Experimental investigation of a vapour compression refrigeration system with 15nm TiO2-R600a nano-refrigerant as the working fluid" Procedia Manufacturing 35: 1222–1227. DOI: 10.1016/j.promfg.2019.06.079.
  21. [21] D. S. Adelekan, O. S. Ohunakin, J. Gill, A. A. Atayero, C. D. Diarra, and E. A. Asuzu, (2019) “Experimental performance of a safe charge of LPG refrigerant enhanced with varying concentrations of TiO 2 nano-lubricant in a domestic refrigerator" Journal of Thermal Analysis and Calorimetry 136: 2439–2448. DOI: 10.1007/s10973-018-7879-2.
  22. [22] W. Azmi, M. Sharif, T. Yusof, R. Mamat, and A. Redhwan, (2017) “Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–A review" Renewable and Sustainable Energy Reviews 69: 415–428. DOI: 10.1016/j.rser.2016.11.207.
  23. [23] N. A. C. Sidik, M. M. Jamil, W. M. A. A. Japar, and I. M. Adamu, (2017) “A review on preparation methods, stability and applications of hybrid nanofluids" Renewable and Sustainable Energy Reviews 80: 1112–1122. DOI: 10.1016/j.rser.2017.05.221.
  24. [24] A. Saxena and S. Tangellapalli, (2022) “Performance analysis of solar-powered integrated desalination and air conditioning system" Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44(3): 6281–6302. DOI: 10.1080/15567036.2022.2097338.
  25. [25] W. Azmi, M. Sharif, T. Yusof, R. Mamat, and A. Redhwan, (2017) “Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–A review" Renewable and Sustainable Energy Reviews 69: 415–428. DOI: doi.org/10.1016/j.rser.2016.11.207.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.