Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Ekawat Ratchai1, Montri Luengchavanon1,4This email address is being protected from spambots. You need JavaScript enabled to view it., Kua-anan Techato1, Warakorn Limbut2, Nyuk Yoong Voo3, Sorawit Narkgrom4

1Sustainable Energy Management Program, Wind Energy and Energy Storage Systems Centre, Faculty of Environmental Management, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand

2Division of Health and Applied Sciences, Forensic Science Innovation and Service Center, Center of Excellence for Trace Analysis and Biosensor, Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand

3Applied Physics, Faculty of Science, Universiti Brunei Darussalam

4PSU EV development Center, Faculty Engineering, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand


 

Received: March 19, 2023
Accepted: May 22, 2023
Publication Date: July 23, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202403_27(3).0002  


Cathode material is not only a crucial component of lithium iron phosphate batteries (LFP or LiFePO4 ) but is also ideally qualified for its low cost, non-toxicity, safety characteristics, and environmental friendliness. This work therefore aims to improve the cathode material efficiency for LiFePO4 . A microwave-assisted solid-state method with chitin (shrimp shell waste), an organic carbon source, was used to synthesize cathode materials for LiFePO4 (LFPM). The results revealed that the carbon element in the chitin-coated LFPM material is 19.80 wt%, which can be homogeneously mixed and has an average particle size of ∼380 nm. The optimal time for the synthesis of the LFPM cathode material by the microwave-assisted solid-state method is 5 minutes, resulting in a phase that is pure, high-quality crystalline, and has the greatest electrical conductivity. Regarding the electrochemical performance, the initial charge and discharge capacities were 112.09 and 112.11 mAh/g, respectively, and the columbic efficiency was 99.97% over 20 cycles. The initial energy density was 336.68 Wh/kg. It can be concluded that the cathode material for LiFePO4 synthesized by the microwave-assisted solid-state method, coated with carbon derived from chitin, has good electrical performance, can be manufactured on a large scale, and is commercially feasible.


Keywords: LiFePO4; Microwave-assisted solid-state synthesis; Carbon coating


  1. [1] S. Zhao, B. Wang, Z. Zhang, X. Zhang, S. He, and H. Yu, (2022) “First-principles computational insights into lithium battery cathode materials" Electrochemical Energy Reviews: 1–31. DOI: 10.1007/s41918-021-00115-5.
  2. [2] M. S. Houache, C.-H. Yim, Z. Karkar, and Y. AbuLebdeh, (2022) “On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review" Batteries 8(7): 70. DOI: 10.3390/batteries8070070.
  3. [3] M. Xiao, L. Wang, F. Ji, and F. Shi, (2016) “Converting chemical energy to electricity through a three-jaw mini-generator driven by the decomposition of hydrogen peroxide" ACS Applied Materials & Interfaces 8(18): 11403–11411. DOI: 10.1021/acsami.6b00550.
  4. [4] Z. Ahsan, B. Ding, Z. Cai, C. Wen, W. Yang, Y. Ma, S. Zhang, G. Song, and M. S. Javed, (2021) “Recent progress in capacity enhancement of LiFePO4 cathode for Li-ion batteries" Journal of Electrochemical Energy Conversion and Storage 18(1): 010801. DOI: 10.1115/1.4047222.
  5. [5] L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, and J. B. Goodenough, (2011) “Development and challenges of LiFePO4 cathode material for lithium-ion batteries" Energy & Environmental Science 4(2): 269–284. DOI: 10.1039/C0EE00029A.
  6. [6] G. Xu, K. Zhong, J.-M. Zhang, and Z. Huang, (2015) “First-principles study of structural, electronic and Li-ion diffusion properties of N-doped LiFePO4 (010) surface" Solid State Ionics 281: 1–5. DOI: 10.1016/j.ssi.2015.08.013.
  7. [7] T. Bashir, S. A. Ismail, Y. Song, R. M. Irfan, S. Yang, S. Zhou, J. Zhao, and L. Gao, (2021) “A review of the energy storage aspects of chemical elements for lithiumion based batteries" Energy Mater 1: 100019. DOI: 10.20517/energymater.2021.20.
  8. [8] H. Djodi, E. Kartini, et al. “The improving conductivity of LiFePO4 by optimizing the calendaring process”. In: IOP Conference Series: Materials Science and Engineering. 432. 1. IOP Publishing. 2018, 012059. DOI: 10.1088/1757-899X/432/1/012059.
  9. [9] S. Sarkar and S. Mitra, (2014) “Carbon coated submicron sized-LiFePO4: improved high rate performance lithium battery cathode" Energy Procedia 54: 718–724. DOI: 10.1016/j.egypro.2014.07.312.
  10. [10] H. Raj and A. Sil, (2018) “Effect of carbon coating on electrochemical performance of LiFePO4 cathode material for Li-ion battery" Ionics 24: 2543–2553. DOI: 10.1007/s11581-017-2423-0.
  11. [11] Y. Gao, K. Xiong, H. Zhang, and B. Zhu, (2021) “Effect of Ru doping on the properties of LiFePO4/C cathode materials for lithium-ion batteries" ACS omega 6(22): 14122–14129. DOI: 10.1021/acsomega.1c00595.
  12. [12] S.-X. Zhao, H. Ding, Y.-C. Wang, B.-H. Li, and C.-W. Nan, (2013) “Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon" Journal of Alloys and Compounds 566: 206–211. DOI: 10.1016/j.jallcom.2013.03.041.
  13. [13] A. B. Yaroslavtsev and I. A. Stenina, (2020) “Carbon coating of electrode materials for lithium-ion batteries" Surface Innovations 9(2–3): 92–110. DOI: 10.1680/jsuin.20.00044.
  14. [14] Y. Lu, Q. Zhang, and J. Chen, (2019) “Recent progress on lithium-ion batteries with high electrochemical performance" Science China Chemistry 62: 533–548. DOI: 10.1007/s11426-018-9410-0.
  15. [15] X. Yan, L. Xin, H. Wang, C. Cao, and S. Sun, (2019) “Synergetic effect of Na-doping and carbon coating on the electrochemical performances of Li3- xNa xV2 (PO4)3/C as cathode for lithium-ion batteries" RSC advances 9(15): 8222–8229. DOI: 10.1039/C8RA10646K.
  16. [16] R. C. K. Reddy, X. Lin, A. Zeb, and C.-Y. Su, (2022) “Metal–organic frameworks and their derivatives as cathodes for lithium-ion battery applications: a review" Electrochemical Energy Reviews: 1–36. DOI: 10.1007/s41918-021-00101-x.
  17. [17] J. Conder, C. Vaulot, C. Marino, C. Villevieille, and C. M. Ghimbeu, (2019) “Chitin and chitosan—Structurally related precursors of dissimilar hard carbons for Na-ion battery" ACS Applied Energy Materials 2(7): 4841–4852. DOI: 10.1021/acsaem.9b00545.
  18. [18] R. Vinodh, Y. Sasikumar, H.-J. Kim, R. Atchudan, and M. Yi, (2021) “Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: A critical review" Journal of Industrial and Engineering Chemistry 104: 155–171. DOI: 10.1016/j.jiec.2021.08.019.
  19. [19] X. Yang, D. Liu, X. Xu, X. He, and J. Xie, (2013) “Mechanism and kinetic studies on the synthesis of LiFePO4 via solid-state reactions" CrystEngComm 15(48): 10648–10656. DOI: 10.1039/C3CE41063C.
  20. [20] F. Yu, L. Zhang, L. Lai, M. Zhu, Y. Guo, L. Xia, P. Qi, G. Wang, and B. Dai, (2015) “High electrochemical performance of LiFePO4 cathode material via in-situ microwave exfoliated graphene oxide" Electrochimica Acta 151: 240–248. DOI: 10.1016/j.electacta.2014.11.014.
  21. [21] D. Jiang, X. Zhang, T. Zhao, B. Liu, R. Yang, H. Zhang, T. Fan, and F. Wang, (2020) “An improved synthesis of iron phosphate as a precursor to synthesize lithium iron phosphate" Bulletin of Materials Science 43(1): 50. DOI: 10.1007/s12034-019-1994-y.
  22. [22] J. Ying, M. Lei, C. Jiang, C. Wan, X. He, J. Li, L. Wang, and J. Ren, (2006) “Preparation and characterization of high-density spherical Li0. 97Cr0. 01FePO4/C cathode material for lithium ion batteries" Journal of Power Sources 158(1): 543–549. DOI: 10.1016/j.jpowsour. 2005.08.045.
  23. [23] S. E. bibinitperiod Services. Resistivity of Semiconductors by Four Probe Method at Different Temperatures. https://www.iiserkol.ac.in/~ph324/ExptManuals/ResistivityFourProbe.pdf.
  24. [24] M. Alipour, C. Ziebert, F. V. Conte, and R. Kizilel, (2020) “A review on temperature-dependent electrochemical properties, aging, and performance of lithium-ion cells" Batteries 6(3): 35. DOI: 10.3390/batteries6030035.
  25. [25] M. F. I. M. Razi, Z. H. C. Daud, Z. Asus, I. I. Mazali, M. I. Ardani, and M. K. A. Hamid, (2021) “A review of internal resistance and temperature relationship, state of health and thermal runaway for lithium-ion battery beyond normal operating condition" Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 88(2): 123–132. DOI: 10.37934/arfmts.88.2.123132.
  26. [26] H. Raj and A. Sil, (2019) “PEDOT: PSS coating on pristine and carbon coated LiFePO4 by one-step process: the study of electrochemical performance" Journal of Materials Science: Materials in Electronics 30: 13604– 13616. DOI: 10.1007/s10854-019-01730-1.
  27. [27] A. Kulka, A. Milewska, W. Zaj ˛ac, K. Swierczek, E. ´ Hanc, and J. Molenda, (2012) “Possibility of modification of phosphoolivine by substitution in Li sublattice" Solid State Ionics 225: 575–579. DOI: 10.1016/j.ssi.2012.02.027.
  28. [28] D. Yi, X. Cui, N. Li, L. Zhang, and D. Yang, (2020) “Enhancement of electrochemical performance of LiFePO4@ C by Ga coating" ACS omega 5(17): 9752–9758. DOI: 10.1021/acsomega.9b04165.
  29. [29] Q. Zhang, S.-Z. Huang, J. Jin, J. Liu, Y. Li, H.-E. Wang, L.-H. Chen, B.-J. Wang, and B.-L. Su, (2016) “Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability" Scientific reports 6(1): 25942. DOI: 10.1038/srep25942.
  30. [30] H.-J. Kim, G.-H. Bae, S.-M. Lee, J.-H. Ahn, and J.-K. Kim, (2019) “Properties of lithium iron phosphate prepared by biomass-derived carbon coating for flexible lithium ion batteries" Electrochimica Acta 300: 18–25. DOI: 10.1016/j.electacta.2019.01.057.
  31. [31] X. Huang, Y. Du, P. Qu, F. Liang, Y. Dai, and Y. Yao, (2017) “Effect of carbon coating on the properties and electrochemical performance of LiFePO4/C composites by vacuum decomposition method" Int J Electrochem Sci 12: 7183–7196. DOI: 10.20964/2017.08.77.
  32. [32] R. Liu, J. Chen, Z. Li, Q. Ding, X. An, Y. Pan, Z. Zheng, M. Yang, and D. Fu, (2018) “Preparation of LiFePO4/C cathode materials via a green synthesis route for lithiumion battery applications" Materials 11(11): 2251. DOI: 10.3390/ma11112251.
  33. [33] J. A. Österreicher, C. Simson, A. Großalber, S. Frank, and S. Gneiger, (2021) “Spatial lithium quantification by backscattered electron microscopy coupled with energydispersive X-ray spectroscopy" Scripta Materialia 194: 113664. DOI: 10.1016/j.scriptamat.2020.113664.
  34. [34] P. Hovington, V. Timoshevskii, S. Burgess, H. Demers, P. Statham, R. Gauvin, and K. Zaghib, (2016) “Can we detect Li K x-ray in lithium compounds using energy dispersive spectroscopy?" Scanning 38(6): 571–578. DOI: 10.1002/sca.21302.
  35. [35] C. Li, Y. Xie, N. Zhang, L. Ai, Y. Liang, K. Tuo, X. Ye, G. Jia, and S. Li, (2019) “Optimization of LiFePO4 cathode material based on phosphorus doped graphite network structure for lithium ion batteries" Ionics 25: 927–937. DOI: 10.1007/s11581-018-2744-7.
  36. [36] G. Cárdenas, G. Cabrera, E. Taboada, and S. P. Miranda, (2004) “Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR" Journal of Applied Polymer Science 93(4): 1876–1885. DOI: 10.1002/app.20647.
  37. [37] H. Rasti, K. Parivar, J. Baharara, M. Iranshahi, and F. Namvar, (2017) “Chitin from the mollusc chiton: extraction, characterization and chitosan preparation" Iranian journal of pharmaceutical research: IJPR 16(1): 366.
  38. [38] A. F. Orliukas, K.-Z. Fung, V. Venckute, V. Ka- ˙ zlauskiene, J. Miškinis, A. Dindune, Z. Kanepe, J. Ro- ˙ nis, A. Maneikis, T. Šalkus, et al., (2014) “SEM/EDX, XPS, and impedance spectroscopy of LiFePO4 and LiFePO4/C ceramics" Lithuanian Journal of Physics 54(2): DOI: 10.3952/physics.v54i2.2919.
  39. [39] J. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E. G. Calvo, and J. M. Bermúdez, (2010) “Microwave heating processes involving carbon materials" Fuel Processing Technology 91(1): 1–8. DOI: 10.1016/j.fuproc.2009.08.021.
  40. [40] T. Kim, J. Lee, and K.-H. Lee, (2014) “Microwave heating of carbon-based solid materials" Carbon letters 15(1): 15–24. DOI: 10.5714/CL.2014.15.1.015.
  41. [41] G. Jiang and S. Xie, (2019) “Preparation and electrochemical properties of lignin porous carbon spheres as the negative electrode of lithium ion batteries" International Journal of Electrochemical Science 14(6): 5422–5434. DOI: 10.20964/2019.06.36.
  42. [42] E. Ratchai, M. Luengchavanon, K.-a. Techato, W. Limbuta, A. Chotikhun, and N. Y. Voo, (2023) “Characteristics of Carbon from Chitin-coated LiFePO4 and its Performance for Lithium Ion Battery" BioResources 18(3): 4399–4412. DOI: 10.15376/biores.18.3.4399-4412.
  43. [43] E. H. Mohan, V. Siddhartha, R. Gopalan, T. N. Rao, and D. Rangappa, (2014) “Urea and sucrose assisted combustion synthesis of LiFePO4/C nano-powder for lithium-ion battery cathode application" AIMS Materials Science 1(4): 191–201. DOI: 10.3934/matersci.2014.4.191.
  44. [44] J. Hagberg, H. A. Maples, K. S. Alvim, J. Xu, W. Johannisson, A. Bismarck, D. Zenkert, and G. Lindbergh, (2018) “Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries" Composites Science and Technology 162: 235–243. DOI: 10.1016/j.compscitech.2018.04.041.
  45. [45] H.-J. Kim, G.-H. Bae, S.-M. Lee, J.-H. Ahn, and J.-K. Kim, (2019) “Properties of lithium iron phosphate prepared by biomass-derived carbon coating for flexible lithium ion batteries" Electrochimica Acta 300: 18–25. DOI: 10.1016/j.electacta.2019.01.057.
  46. [46] X. Li, Y. Z. Jiang, X. K. Li, H. X. Jiang, J. L. Liu, J. Feng, S. B. Lin, and X. Guan, (2018) “Electrochemical property of LiFePO4/C composite cathode with different carbon sources" Rare Metals 37: 743–749. DOI: 10.1007/s12598-016-0781-9.
  47. [47] X. Ren, Z. Li, J. Cao, S. Tian, K. Zhang, J. Guo, L. Wen, and G. Liang, (2021) “Enhanced rate performance of the mortar-like LiFePO4/C composites combined with the evenly coated of carbon aerogel" Journal of Alloys and Compounds 867: 158776. DOI: 10.1016/j.jallcom.2021.158776.
  48. [48] M. T. Thi, C. Kim, S. Kwon, H. Kang, J. M. Ko, J. Kim, and W. Choi, (2023) “Investigation of the Properties of Anode Electrodes for Lithium–Ion Batteries Manufactured Using Cu, and Si-Coated Carbon Nanowall Materials" Energies 16(4): 1935. DOI: 10.3390/en16041935.
  49. [49] H. Yang, Y. Qiu, and X. Guo, (2015) “Prediction of state-of-health for nickel-metal hydride batteries by a curve model based on charge-discharge tests" Energies 8(11): 12474–12487. DOI: 10.3390/en81112322.
  50. [50] Y.-H. Chiang, W.-Y. Sean, and J.-C. Ke, (2011) “Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles" Journal of Power Sources 196(8): 3921–3932. DOI: 10.1016/j.jpowsour.2011.01.005.
  51. [51] Y. Wu and R. Holze, (2021) “Self-discharge in supercapacitors: Causes, effects and therapies: An overview" Electrochemical Energy Technology 7(1): 1–37. DOI: 10.1515/eetech-2020-0100.
  52. [52] J. Guo, Y. Li, K. Pedersen, and D.-I. Stroe, (2021) “Lithium-ion battery operation, degradation, and aging mechanism in electric vehicles: an overview" Energies 14(17): 5220. DOI: 10.3390/en14175220.
  53. [53] L. Zhang, Y. Qin, Y. Liu, Q. Liu, Y. Ren, A. N. Jansen, and W. Lu, (2018) “Capacity fading mechanism and improvement of cycling stability of the SiO anode for lithiumion batteries" Journal of The Electrochemical Society 165(10): A2102. DOI: 10.1149/2.0431810jes.
  54. [54] C. Ania, J. Parra, J. Menéndez, and J. Pis, (2007) “Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals" Water research 41(15): 3299–3306. DOI: 10.1016/j.watres.2007.05.006.
  55. [55] N. Yesibolati, N. Umirov, A. Koishybay, M. Omarova, I. Kurmanbayeva, Y. Zhang, Y. Zhao, and Z. Bakenov, (2015) “High performance Zn/LiFePO4 aqueous rechargeable battery for large scale applications" Electrochimica Acta 152: 505–511. DOI: 10.1016/j.electacta.2014.11.168.
  56. [56] T.-J. Kuo, (2019) “Development of a comprehensive model for the coulombic efficiency and capacity fade of LiFePO4 batteries under different aging conditions" Applied Sciences 9(21): 4572. DOI: 10.3390/app9214572.
  57. [57] M. A. Marwat, M. Yasar, W. Ma, P. Fan, K. Liu, D. Lu, Y. Tian, C. Samart, B. Ye, and H. Zhang, (2020) “Significant energy density of discharge and charge–discharge efficiency in Ag@ BNN nanofillers-modified heterogeneous sandwich structure nanocomposites" ACS Applied Energy Materials 3(7): 6591–6601. DOI: 10.1021/acsaem.0c00770.
  58. [58] Y. Gao, Z. Pan, J. Sun, Z. Liu, and J. Wang, (2022) “High-energy batteries: beyond lithium-ion and their long road to commercialisation" Nano-micro letters 14(1): 94. DOI: 10.1007/s40820-022-00844-2.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.