Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Mengyao Pang1, Gongxing Yan This email address is being protected from spambots. You need JavaScript enabled to view it.1, Jie Li1, and Minggui Zhou2

1School of Architectural Engineering, Chongqing Creation Vocational College, Yongchuan 402160, Chongqing, China
2School of Intelligent Construction, Luzhou vocational and technical college, Luzhou 646000, Sichuan, China


 

Received: June 29, 2022
Accepted: December 12, 2022
Publication Date: February 9, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202310_26(10).0008  


ABSTRACT


High-performance concrete (HPC) is a concrete model with high compressive strength (CS). The problem of compressive strength in concrete is of great importance to civil engineers, and HPC has been able to meet this demand. The employed of this type of concrete model has significant efficiency and durability. In concrete, other components are added to components containing water, cement, and aggregates. Pneumatic ash and Micro-silica are components added to this concrete to reduce the water to cement ratio and increase the compressive strength of concrete. The HPC concrete modeling in this study is done with the Radial Basis Function Neural Network (RBFNN) model of Artificial Intelligence models (AI), and this model uses a combination of two optimizers, Grasshopper Optimization Algorithm (GOA) and Marine Predators Algorithm (MPA), both algorithms are used and belong to a new initiative. The combination of the above model and the algorithms in the context of RBF-MPA and RBF-GOA gave the desired results. The maximum values of the RF parameter combination models RBFMPA and RBF-GOA are 97.4% and 97%, and the difference is 0.4%, which is significantly different and close to each other. The OBJs calculated by the RBF-MPA model and the RBF-GOA model are 2.4 and 2.61, respectively. The maximum mathematical SI parameters for each model are 0.0402 and 0.0424, which are provided as output for the training section of each section. The calculated errors in both hybrid models are acceptable and do not differ significantly from each other.


Keywords: High-Performance Concrete; Radial Basis Function; Grasshopper Optimization Algorithm; Marine Predators Algorithm; Compressive Strength


REFERENCES


  1. [1] E. Possan,W. A. Thomaz, G. A. Aleandri, E. F. Felix, and A. C. dos Santos, (2017) “CO2 uptake potential due to concrete carbonation: A case study" Case Studies in Construction Materials 6: 147–161. DOI: https://doi.org/10.1016/j.cscm.2017.01.007.
  2. [2] M. S. Barkhordari, M. Tehranizadeh, and M. H. Scott, (2021) “Numerical modelling strategy for predicting the response of reinforced concrete walls using Timoshenko theory" Magazine of Concrete Research 73(19): 988–1010. DOI: 10.1680/jmacr.19.00542.
  3. [3] W. B. Fuller and S. E. Thompson, (1907) “The Laws of Proportioning Concrete" Transactions of the American Society of Civil Engineers 59(2): 67–143. DOI: 10.1061/TACEAT.0001979.
  4. [4] P. G. Asteris and V. G. Mokos, (2020) “Concrete compressive strength using artificial neural networks" Neural Computing and Applications 32(15): 11807–11826. DOI: 10.1007/s00521-019-04663-2.
  5. [5] S.-M. Jian and B. Wu, (2021) “Compressive behavior of compound concrete containing demolished concrete lumps and recycled aggregate concrete" Construction and Building Materials 272: 121624. DOI: 10.1016/j.conbuildmat.2020.121624.
  6. [6] V. M. Malhotra and P. K. Mehta, (2008) “High performance, high-volume fly ash concrete for building sustainable and durable structure. 3rd":
  7. [7] D. V. Dao, H. Adeli, H.-B. Ly, L. M. Le, V. M. Le, T.-T. Le, and B. T. Pham, (2020) “A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation" Sustainability 12(3): 830. DOI: 10.3390/su12030830.
  8. [8] A. Neville and P.-C. Aitcin, (1998) “High performance concrete—An overview" Materials and structures 31(2): 111–117. DOI: 10.1007/BF02486473.
  9. [9] F. de Larrard and T. Sedran, (2002) “Mixtureproportioning of high-performance concrete" Cement and Concrete Research 32(11): 1699–1704. DOI: https://doi.org/10.1016/S0008-8846(02)00861-X.
  10. [10] S. C. Kou, C. S. Poon, and D. Chan, (2007) “Influence of Fly Ash as Cement Replacement on the Properties of Recycled Aggregate Concrete" Journal of Materials in Civil Engineering 19(9): 709–717. DOI: 10.1061/(ASCE)0899-1561(2007)19:9(709).
  11. [11] R. Duval and E. Kadri, (1998) “Influence of Silica Fume on the Workability and the Compressive Strength of High-Performance Concretes" Cement and Concrete Research 28(4): 533–547. DOI: https://doi.org/10.1016/S0008-8846(98)00010-6.
  12. [12] K. Wesche. Fly ash in concrete: properties and performance. CRC Press, 1991.
  13. [13] A. Falmata, A. Sulaiman, R. Mohamed, and A. Shettima, (2020) “Mechanical properties of self-compacting high-performance concrete with fly ash and silica fume" SN Applied Sciences 2(1): 1–11. DOI: 10.1007/s42452-019-1746-z.
  14. [14] K. Ganesh Babu and G. Siva Nageswara Rao, (1994) “Early strength behaviour of fly ash concretes" Cement and Concrete Research 24(2): 277–284. DOI: https://doi.org/10.1016/0008-8846(94)90053-1.
  15. [15] K. Ganesh Babu and P. Surya Prakash, (1995) “Efficiency of silica fume in concrete" Cement and Concrete Research 25(6): 1273–1283. DOI: https://doi.org/10.1016/0008-8846(95)00120-2.
  16. [16] H. Asgeirsson, (1986) “Silica fume in cement and silane for counteracting of alkali-silica reactions in iceland" Cement and Concrete Research 16(3): 423–428. DOI: https://doi.org/10.1016/0008-8846(86)90118-3.
  17. [17] R. Siddique, P. Aggarwal, and Y. Aggarwal, (2011) “Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks" Advances in Engineering Software 42(10): 780–786. DOI: https://doi.org/10.1016/j.advengsoft.2011.05.016.
  18. [18] B. Vakhshouri and S. Nejadi, (2018) “Prediction of compressive strength of self-compacting concrete by ANFIS models" Neurocomputing 280: 13–22. DOI: https://doi.org/10.1016/j.neucom.2017.09.099.
  19. [19] B. G. Aiyer, D. Kim, N. Karingattikkal, P. Samui, and P. R. Rao, (2014) “Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine" KSCE Journal of Civil Engineering 18(6): 1753–1758. DOI: 10.1007/s12205-014-0524-0.
  20. [20] L. EX and N. INNO, “IJRT_Volume-7_Issue-6_March_30_2019. pdf":
  21. [21] B. R. Prasad, H. Eskandari, and B. V. Reddy, (2009) “Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN" Construction and Building Materials 23(1): 117–128. DOI: https://doi.org/10.1016/j.conbuildmat.2008.01.014.
  22. [22] A. Behnood, V. Behnood, M. Modiri Gharehveran, and K. E. Alyamac, (2017) “Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm" Construction and Building Materials 142: 199–207. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.061.
  23. [23] E. M. Golafshani, A. Behnood, and M. Arashpour, (2020) “Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer" Construction and Building Materials 232: 117266. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117266.
  24. [24] A. Kandiri, E. Mohammadi Golafshani, and A. Behnood, (2020) “Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm" Construction and Building Materials 248: 118676. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118676.
  25. [25] S. Jovic, R. Radulovic, M. Kovacevic, R. Bozovic, and Z. Sarkocevic, (2021) “Estimation of important variables for strength of concrete with high performance based on neuro fuzzy logic approach" STRUCTURAL CONCRETE 22(2):
  26. [26] A. T. A. Dantas, M. Batista Leite, and K. de Jesus Nagahama, (2013) “Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks" Construction and Building Materials 38: 717–722. DOI: https://doi.org/10.1016/j.conbuildmat.2012.09.026.
  27. [27] A. Hammoudi, K. Moussaceb, C. Belebchouche, and F. Dahmoune, (2019) “Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates" Construction and Building Materials 209: 425–436. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.119.
  28. [28] F. Khademi, S. M. Jamal, N. Deshpande, and S. Londhe, (2016) “Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression" International Journal of Sustainable Built Environment 5(2): 355–369. DOI: https://doi.org/10.1016/j.ijsbe.2016.09.003.
  29. [29] A. Gholampour, A. H. Gandomi, and T. Ozbakkaloglu, (2017) “New formulations for mechanical properties of recycled aggregate concrete using gene expression programming" Construction and Building Materials 130: 122–145. DOI: https://doi.org/10.1016/j.conbuildmat.2016.10.114.
  30. [30] A. Behnood and E. M. Golafshani, (2018) “Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves" Journal of Cleaner Production 202: 54–64. DOI: https://doi.org/10.1016/j.jclepro.2018.08.065.
  31. [31] ˙I. B. Topçu and M. Sarıdemir, (2008) “Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic" Computational Materials Science 41(3): 305–311. DOI: https://doi.org/10.1016/j.commatsci.2007.04.009.
  32. [32] S. Cvetkovic, (2021) “Estimation of factors affecting the concrete strength in presence of blast furnace slag and fly ash using adaptive neuro-fuzzy technique" STRUCTURAL CONCRETE 22(2):
  33. [33] Z. M. Yaseen, R. C. Deo, A. Hilal, A. M. Abd, L. C. Bueno, S. Salcedo-Sanz, and M. L. Nehdi, (2018) “Predicting compressive strength of lightweight foamed concrete using extreme learning machine model" Advances in Engineering Software 115: 112–125. DOI: https://doi.org/10.1016/j.advengsoft.2017.09.004.
  34. [34] R. Madandoust, J. H. Bungey, and R. Ghavidel, (2012) “Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models" Computational Materials Science 51(1): 261–272. DOI: https://doi.org/10.1016/j.commatsci.2011.07.053.
  35. [35] E. Golafshani, A. Rahai, and M. Sebt, (2015) “Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete" Materials and structures 48(5): 1581–1602. DOI: 10.1617/s11527-014-0256-0.
  36. [36] E. M. Golafshani and S. Talatahari, (2018) “Predicting the climbing rate of slip formwork systems using linear biogeography-based programming" Applied Soft Computing 70: 263–278. DOI: https://doi.org/10.1016/j.asoc.2018.05.036.
  37. [37] L. Wang. Support vector machines: theory and applications. 177. Springer Science & Business Media, 2005.
  38. [38] J. R. Koza and R. Poli. “Genetic Programming”. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Ed. by E. K. Burke and G. Kendall. Boston, MA: Springer US, 2005, 127–164. DOI: 10.1007/0-387-28356-0_5.
  39. [39] A. K. Jain, J. Mao, and K. M. Mohiuddin, (1996) “Artificial neural networks: A tutorial" Computer 29(3): 31–44.
  40. [40] E. M. Golafshani, A. Rahai, and S. S. H. Kebria, (2014) “Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming" Computers and Concrete 14(3): 327–345.
  41. [41] F. Masoumi, S. Najjar-Ghabel, A. Safarzadeh, and B. Sadaghat, (2020) “Automatic calibration of the groundwater simulation model with high parameter dimensionality using sequential uncertainty fitting approach" Water Supply 20(8): 3487–3501. DOI: 10.2166/ws.2020.241.
  42. [42] H. Cheng, S. Kitchen, and G. Daniels, (2022) “Novel hybrid radial based neural network model on predicting the compressive strength of long-term HPC concrete" Advances in Engineering and Intelligence Systems 001(02): -. DOI: 10.22034/aeis.2022.340732.1012.
  43. [43] Z. Nurlan, (2022) “A novel hybrid radial basis function method for predicting the fresh and hardened properties of self-compacting concrete" Advances in Engineering and Intelligence Systems 001(01): -. DOI: 10.22034/aeis.2022.148305.
  44. [44] J. Cherian, (2022) “Determining the amount of earthquake displacement using differential synthetic aperture radar interferometry (D-InSAR) and satellite images of Sentinel-1 A: A case study of Sarpol-e Zahab city" Advances in Engineering and Intelligence Systems 001(01): -. DOI: 10.22034/aeis.2022.148304.
  45. [45] M. Najafzadeh and G. Oliveto, (2021) “More reliable predictions of clear-water scour depth at pile groups by robust artificial intelligence techniques while preserving physical consistency" Soft Computing 25(7): 5723–5746. DOI: 10.1007/s00500-020-05567-3.
  46. [46] F. Homaei and M. Najafzadeh, (2020) “A reliability based probabilistic evaluation of the wave-induced scour depth around marine structure piles" Ocean Engineering 196: 106818. DOI: https://doi.org/10.1016/j.oceaneng.2019.106818.
  47. [47] F. Saberi-Movahed, M. Najafzadeh, and A. Mehrpooya, (2020) “Receiving more accurate predictions for longitudinal dispersion coefficients in water pipelines: training group method of data handling using extreme learning machine conceptions" Water Resources Management 34(2): 529–561. DOI: 10.1007/s11269-019-02463-w.
  48. [48] G. Pazouki, E. M. Golafshani, and A. Behnood, (2022) “Predicting the compressive strength of self-compacting concrete containing Class F fly ash using metaheuristic radial basis function neural network" Structural Concrete 23(2): 1191–1213. DOI: https://doi.org/10.1002/suco.202000047.
  49. [49] N.-J.Wu, (2021) “Predicting the Compressive Strength of Concrete Using an RBF-ANN Model" Applied Sciences 11(14): DOI: 10.3390/app11146382.
  50. [50] M. Pala, E. Özbay, A. Özta¸s, and M. I. Yuce, (2007) “Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks" Construction and Building Materials 21(2): 384–394. DOI: https://doi.org/10.1016/j.conbuildmat.2005.08.009.
  51. [51] L. Lam, Y.Wong, and C. Poon, (1998) “Effect of Fly Ash and Silica Fume on Compressive and Fracture Behaviors of Concrete" Cement and Concrete Research 28(2): 271–283. DOI: https ://doi.org/10.1016/S0008-8846(97)00269-X.
  52. [52] A. Bors and I. Pitas, (1996) “Median radial basis function neural network" IEEE Transactions on Neural Networks 7(6): 1351–1364. DOI: 10.1109/72.548164.
  53. [53] S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah, (2018) “Grasshopper optimization algorithm for multi-objective optimization problems" Applied Intelligence 48(4): 805–820. DOI: 10.1007/s10489-017-1019-8.
  54. [54] S. Dwivedi, M. Vardhan, and S. Tripathi, (2021) “Building an efficient intrusion detection system using grasshopper optimization algorithm for anomaly detection" Cluster Computing 24(3): 1881–1900. DOI: 10.1007/s10586-020-03229-5.
  55. [55] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, (2020) “Marine Predators Algorithm: A nature-inspired metaheuristic" Expert Systems with Applications 152: 113377. DOI: https://doi.org/10.1016/j.eswa.2020.113377.
  56. [56] M. Ramezani, D. Bahmanyar, and N. Razmjooy, (2021) “A new improved model of marine predator algorithm for optimization problems" Arabian Journal for Science and Engineering 46(9): 8803–8826. DOI: 10.1007/s13369-021-05688-3.
  57. [57] D.-C. Feng, Z.-T. Liu, X.-D. Wang, Y. Chen, J.-Q. Chang, D.-F. Wei, and Z.-M. Jiang, (2020) “Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach" Construction and Building Materials 230: 117000. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117000.
  58. [58] A. Ahmad, K. Chaiyasarn, F. Farooq, W. Ahmad, S. Suparp, and F. Aslam, (2021) “Compressive Strength Prediction via Gene Expression Programming (GEP) and Artificial Neural Network (ANN) for Concrete Containing RCA" Buildings 11(8): DOI: 10.3390/buildings11080324.
  59. [59] Y. Moodi, M. Ghasemi, and S. R. Mousavi, (2022) “Estimating the compressive strength of rectangular fiber reinforced polymer–confined columns using multilayer perceptron, radial basis function, and support vector regression methods" Journal of Reinforced Plastics and Composites 41(3-4): 130–146. DOI: 10.1177/07316844211050168.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.