Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

S. H. Ali1, R. S. R. M. Hafriz2, A. H. Shamsuddin2, and A. Salmiaton This email address is being protected from spambots. You need JavaScript enabled to view it.1,3

1Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
2Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
3Sustainable Process Engineering Research Centre, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia


 

Received: December 17, 2021
Accepted: May 24, 2022
Publication Date: July 28, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202304_26(4).0009  


ABSTRACT


Sludge palm oil (SPO) is waste generated in the palm oil industry. The discharge of SPO together with palm oil mill effluent has created a major problem due to its difficulty in the treatment process. The feasibility of SPO as a raw material for biofuel production was investigated via catalytic pyrolysis process using heterogeneous Malaysian dolomite catalyst. The effects of operating temperatures and reaction times in the catalytic pyrolysis using Malaysian dolomite catalyst were assessed. The condition for the reaction parameters investigated is as followed: operating temperatures of 350 ◦C, 400 ◦C, and 450 ◦C, reaction times of 30, 45 and 60 minutes, under a constant of 100 ml/min of nitrogen flow rate and 5 wt.% catalyst loading. At a reaction temperature of 350 ◦C the SPO conversion was very low even at longer reaction times. The longer reaction times gave higher SPO conversion at an operating temperature of 400 °C with the range of conversion between 45.7 to 58.3 wt.%. At temperature 450 ◦C the conversion achieved an average of 93.1 ± 1.0 wt.%. Only a slight change at longer times was observed at this temperature. At a temperature of 400 ◦C and 45 min of reaction times, the pyro-oil obtained from the process contained the highest hydrocarbon content (83.90 %) and lowest oxygenated compound content (16.10 %), even though the conversion was lower than at 450 ◦C. The product selectivity was highest in the diesel range at the reaction temperature of 400 ◦C. Thus, with further improvement in catalyst modification together with optimized operating conditions, SPO can be used as a feedstock in the catalytic pyrolysis for producing biofuel in the range carbon number of diesel, gasoline and kerosene.


Keywords: Sludge Palm Oil (SPO), Pyro-oil, Malaysian Dolomite Catalyst, Biofuel


REFERENCES


  1. [1] T. Ito, Y. Sakurai, Y. Kakuta, M. Sugano, and K. Hirano, (2012) “Biodiesel production from waste animal fats using pyrolysis method" Fuel Processing Technology 94(1): 47–52. DOI: 10.1016/j.fuproc.2011.10.004.
  2. [2] R. E. Sims, W. Mabee, J. N. Saddler, and M. Taylor, (2010) “An overview of second generation biofuel technologies" Bioresource Technology 101(6): 1570–1580. DOI: 10.1016/j.biortech.2009.11.046.
  3. [3] A. Singh, S. I. Olsen, and P. S. Nigam, (2011) “A viable technology to generate third-generation biofuel" Journal of Chemical Technology and Biotechnology 86(11): 1349–1353. DOI: 10.1002/jctb.2666.
  4. [4] R. Hafriz, A. Salmiaton, R. Yunus, and Y. Taufiq-Yap, (2018) “Green Biofuel Production via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst" Bulletin of Chemical Reaction Engineering amp;amp; Catalysis 13(3): 489–501. DOI: 10.9767/bcrec.13.3.1956.489-501.
  5. [5] K. Ainie,W. Siew, Y. Tan, A. Ma, et al., (1995) “Characterization of a by-product of palm oil milling." Elaeis 7(2): 162–170.
  6. [6] R. Supriyanto, W. Simanjuntak, K. D. Pandiangan, R. T. M. Situmeang, and M. Y. Ahmadhani, (2018) “Chemical composition of liquid fuel produced by copyrolysis of sugarcane bagasse and sludge palm oil using zeolite-Y as catalyst" Oriental Journal of Chemistry 34(3): 1533–1540. DOI: 10.13005/ojc/340345.
  7. [7] W. L. Liew, M. A. Kassim, K. Muda, S. K. Loh, and A. C. Affam, (2015) “Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review" Journal of Environmental Management 149: 222–235. DOI: 10.1016/j.jenvman.2014.10.016.
  8. [8] R. Manurung, D. A. Ramadhani, and S. Maisarah. “One step transesterification process of sludge palm oil (SPO) by using deep eutectic solvent (DES) in biodiesel production”. In: 1855. Cited by: 9; All Open Access, Bronze Open Access. 2017. DOI: 10.1063/1.4985531.
  9. [9] P. Muanruksa, J.Winterburn, and P. Kaewkannetra, (2019) “A novel process for biodiesel production from sludge palm oil" MethodsX 6: 2838–2844. DOI: 10.1016/j.mex.2019.09.039.
  10. [10] N. A. Wafti, H. L. Lik Nang, and C. Y. May, (2012) “Value-added products from palm sludge oil" Journal of Applied Sciences 12(11): 1199–1202. DOI: 10.3923/jas.2012.1199.1202.
  11. [11] A. Hayyan, M. Z. Alam, M. E. Mirghani, N. A. Kabbashi, N. I. N. M. Hakimi, Y. M. Siran, and S. Tahiruddin, (2010) “Sludge palm oil as a renewable raw material for biodiesel production by two-step processes" Bioresource Technology 101(20): 7804–7811. DOI: 10.1016/j.biortech.2010.05.045.
  12. [12] L. Thinagaran and K. Sudesh, (2019) “Evaluation of Sludge Palm Oil as Feedstock and Development of Efficient Method for its Utilization to Produce Polyhydroxyalkanoate" Waste and Biomass Valorization 10(3): 709–720. DOI: 10.1007/s12649-017-0078-8.
  13. [13] A. Demirbas, (2008) “Studies on cottonseed oil biodiesel prepared in non-catalytic SCF conditions" Bioresource Technology 99(5): 1125–1130. DOI: 10.1016/j.biortech.2007.02.024.
  14. [14] R. Fréty, M. Da Graça C. Da Rocha, S. T. Brandão, L. A. Pontes, J. F. Padilha, L. E. P. Borges, andW. A. Gonzalez, (2011) “Cracking and hydrocracking of triglycerides for renewable liquid fuels: Alternative processes to transesterification" Journal of the Brazilian Chemical Society 22(7): 1206–1220. DOI: 10.1590/S0103-50532011000700003.
  15. [15] N. A. Negm, A. M. Rabie, and E. A. Mohammed, (2018) “Molecular interaction of heterogeneous catalyst in catalytic cracking process of vegetable oils: chromatographic and biofuel performance investigation" Applied Catalysis B: Environmental 239: 36–45. DOI: 10.1016/j.apcatb.2018.07.070.
  16. [16] J.-G. Na, J. K. Han, Y.-K. Oh, J.-H. Park, T. S. Jung, S. S. Han, H. C. Yoon, S. H. Chung, J.-N. Kim, and C. H. Ko, (2012) “Decarboxylation of microalgal oil without hydrogen into hydrocarbon for the production of transportation fuel" Catalysis Today 185(1): 313–317. DOI: 10.1016/j.cattod.2011.08.009.
  17. [17] T. Morgan, E. Santillan-Jimenez, A. E. Harman-Ware, Y. Ji, D. Grubb, and M. Crocker, (2012) “Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts" Chemical Engineering Journal 189-190: 346–355. DOI: 10.1016/j.cej.2012.02.027.
  18. [18] J. G. Immer, M. J. Kelly, and H. H. Lamb, (2010) “Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids" Applied Catalysis A: General 375(1): 134–139. DOI: 10.1016/j.apcata.2009.12.028.
  19. [19] D. Li, H. Xin, X. Du, X. Hao, Q. Liu, and C. Hu, (2015) “Recent advances for the production of hydrocarbon biofuel via deoxygenation progress" Science Bulletin 60(24): 2096–2106. DOI: 10.1007/s11434-015-0971-0.
  20. [20] H.-S. Roh, I.-H. Eum, D.-W. Jeong, B. E. Yi, J.-G. Na, and C. H. Ko, (2011) “The effect of calcination temperature on the performance of Ni/MgO-Al 2O3 catalysts for decarboxylation of oleic acid" Catalysis Today 164(1): 457–460. DOI: 10.1016/j.cattod.2010.10.048.
  21. [21] D. Chen, L. Yin, H. Wang, and P. He, (2014) “Pyrolysis technologies for municipal solid waste: A review" Waste Management 34(12): 2466–2486. DOI: 10.1016/j.wasman.2014.08.004.
  22. [22] S. Da Mota, A. Mancio, D. Lhamas, D. De Abreu, M. Da Silva,W. Dos Santos, D. De Castro, R. De Oliveira, M. Araújo, L. E. P. Borges, and N. Machado, (2014) “Production of green diesel by thermal catalytic cracking of crude palm oil (Elaeis guineensis Jacq) in a pilot plant" Journal of Analytical and Applied Pyrolysis 110(1): 1–11. DOI: 10.1016/j.jaap.2014.06.011.
  23. [23] R. Hafriz, I. N. Shafizah, N. Arifin, A. Salmiaton, R. Yunus, Y. T. Yap, and A. Shamsuddin, (2021) “Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil" Renewable Energy 178: 128–143.
  24. [24] C. H. Ko, S. H. Park, J.-K. Jeon, D. J. Suh, K.-E. Jeong, and Y.-K. Park, (2012) “Upgrading of biofuel by the catalytic deoxygenation of biomass" Korean Journal of Chemical Engineering 29(12): 1657–1665. DOI: 10.1007/s11814-012-0199-5.
  25. [25] R. Hafriz, I. Nor Shafizah, A. Salmiaton, N. Arifin, R. Yunus, Y. Taufiq Yap, and S. Abd Halim, (2020) “Comparative study of transition metal-doped calcined Malaysian dolomite catalysts for WCO deoxygenation reaction" Arabian Journal of Chemistry 13(11): 8146–8159. DOI: 10.1016/j.arabjc.2020.09.046.
  26. [26] Y. Fang, L. Yin, H. Yang, X. Gong, Y. Chen, and H. Chen, (2021) “Catalytic mechanisms of potassium salts on pyrolysis of -O-4 type lignin model polymer based on DFT study" Proceedings of the Combustion Institute 38(3): 3969–3976. DOI: 10.1016/j.proci.2020.07.038.
  27. [27] S. Thangalazhy-Gopakumar,W. M. A. Al-Nadheri, D. Jegarajan, J. Sahu, N. Mubarak, and S. Nizamuddin, (2015) “Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production" Bioresource Technology 178: 65–69. DOI: 10.1016/j.biortech.2014.09.068.
  28. [28] L. Li, K. Quan, J. Xu, F. Liu, S. Liu, S. Yu, C. Xie, B. Zhang, and X. Ge, (2014) “Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst" Fuel 123: 189–193. DOI: 10.1016/j.fuel.2014.01.049.
  29. [29] L. E. Oi, M.-Y. Choo, H. V. Lee, H. C. Ong, S. B. A. Hamid, and J. C. Juan, (2016) “Recent advances of titanium dioxide (TiO2) for green organic synthesis" RSC Advances 6(110): 108741–108754. DOI: 10.1039/c6ra22894a.
  30. [30] F. H. Kamil, A. Salmiaton, R. Hafriz, I. R. Hussien, and R. Omar, (2020) “Characterization and application of molten slag as catalyst in pyrolysis of waste cooking oil" Bulletin of Chemical Reaction Engineering Catalysis 15(1): 119–127. DOI: 10.9767/bcrec.15.1.3973.119-127.
  31. [31] R. Hafriz, I. Nor Shafizah, N. Arifin, A. Maisarah, A. Salmiaton, and A. Shamsuddin, (2022) “Comparative, reusability and regeneration study of potassium oxide-based catalyst in deoxygenation reaction of WCO" Energy Conversion and Management: X 13: DOI: 10.1016/j.ecmx.2021.100173.