Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Hsuan Chang This email address is being protected from spambots. You need JavaScript enabled to view it.1, Yih-Hung Chen1, Yun-Tsz Chen1 and Chii-Dong Ho1

1Department of Chemical and Materials Engineering, Tamkang University, Tamsui, Taiwan 251, R.O.C.


 

Received: December 18, 2017
Accepted: March 9, 2018
Publication Date: September 1, 2018

Download Citation: ||https://doi.org/10.6180/jase.201809_21(3).0020  

ABSTRACT


Autothermal reforming (ATR) of methane, which supplies the heat for endothermic steam reforming by internal combustion of methane, is an important process for synthetic gas production. The axial-distributed feeding of oxygen via a packed bed inert membrane reactor (MR) can reduce the peak temperature and improve the reactor performance. A modified MR, called mixed membrane reactor(MMR), combines permeable membrane tube wall and non-permeable tube wall provides extra degrees of freedom for reactor design and operation. For MR and MMR, this study presents the ternary-objective optimization analysis for maximizing hydrogen production rate, non-combustion selectivity and conversion of methane, using a 1D pseudo-homogeneous reactor model and the NSGA-II algorithm. Compared to MR, MMR can be operated under significantly higher oxygen permeationfluxwithoutviolatingthemaximumtemperatureconstraint.Thenon-combustion selectivity and conversion of methane of MR and MMR are close, however, the hydrogen production rate of MMR can be as high as 200% of MR.


Keywords: Methane Reforming, Membrane Reactor, Mixed Membrane Reactor, Multi-objective Optimization


REFERENCES


  1. [1] Ulber, D., “A Guide to Methane Reforming,” Chemical Engineering, January, pp. 4046 (2015).
  2. [2] Rice,S. F. and Mann, D. P., Autothermal Reforming of Natural Gas to Synthesis Gas,SAND2007-2331, Sandia National Laboratories, U.S. Department of Commerce(2007).
  3. [3] Marcano, J. G. S. and Tsotsis, T. T., Catalytic Membranes and Membrane Reactors, Wiley-VCH Verlag GmbH, WeinheimGermany(2002).
  4. [4] Coronas,J.andSantamaría,J.,“CatalyticReactorsBased on Porous Ceramic Membranes,” Catalysis Today, Vol. 51, pp. 377389 (1999). doi: 10.1016/S0920-5861 (99)00090-5
  5. [5] Rodríguez, M. L., Ardissone, D. E., Opez, E. L., Pedernera, M. N. and Borio, D. O., “Reactor Designs for Ethylene Production via Ethane Oxidative Dehydrogenation: Comparison of Performance,” Industrial and Engineering Chemistry Research, Vol. 50, pp. 26902697 (2011). doi: 10.1021/ie100738q
  6. [6] Rodríguez, M. L., Pedernera, M. N. and Borio, D. O., “Two Dimensional Modeling of a Membrane Reactor for ATR of Methane,” Catalysis Today, Vol. 193, pp. 137144 (2012). doi: 10.1016/j.cattod.2012.04.010
  7. [7] Coronas,J.,Menéndez,M.andSantamaría,J.,“Use of a Ceramic Membrane Reactor for the Oxidative Dehydrogenation of Ethane to Ethylene and Higher Hydrocarbons,” Industrial and Engineering Chemistry Research, Vol. 34, pp. 42294234 (1995). doi: 10.1021/ ie00039a011
  8. [8] Ávila-Neto, C. N., Dantas, S. C., Silva, F. A., Franco, T. V., Romanielo, L. L., Hori, C. E. and Assis, A. J., “Hydrogen Production fromMethane Reforming: ThermodynamicAssessmentandAutothermalReactorDesign,” Journal of Natural Gas Science and Engineering, Vol. 1, pp. 205215 (2009). doi: 10.1016/j.jngse. 2009.12.003
  9. [9] Sinaei Nobandegani, M., Sardashti Birjandi, M. R., Darbandi, T., Khalilipour, M. M., Shahraki, F. and Mohebbi-Kalhori, D., “An Industrial Steam Methane Reformer Optimization Using Response Surface Methodology,” Journal of Natural Gas Science and Engineering, Vol. 36, pp. 540549 (2016). doi: 10.1016/j. jngse.2016.10.031
  10. [10] Shahhosseini, H.R.,Farsi,M.and Eini,S.,“Multi-objective Optimization of Industrial Membrane SMR to Produce Syngas for Fischer-Tropsch Production Using NSGA-II and Decision Makings,” Journal of Natural Gas Science and Engineering, Vol. 32, pp. 222 238 (2016). doi: 10.1016/j.jngse.2016.04.005
  11. [11] Deb, K., Patap, A., Agarwal, S. and Meyarivan, T., “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, pp. 182197 (2002). doi: 10.1109/ 4235.996017
  12. [12] De Groote, A. M. and Froment, G. F., “Simulation of the Catalytic Partial Oxidation of Methane to Synthesis Gas,” Applied Catalysis A: General, Vol. 138, pp. 245264 (1996).doi:10.1016/0926-860X(95)00299-5
  13. [13] Ergun, S., “Fluid Flow through Packed Columns,” Chem. Eng. Prog., Vol. 48, pp. 8994 (1952).
  14. [14] Xu,J.andFroment,G.F.,“MethaneSteamReforming, MethanationandWater-gasShift:I.IntrinsicKinetics,” AIChE Journal, Vol. 35, pp. 8896 (1989). doi: 10. 1002/aic.690350109
  15. [15] Mallada, R., Pedernera, M., Menéndez, M. and Santamaria, J., “Synthesis of Maleic Anhydride in an InertMembraneReactor.EffectofReactorConfiguration,” Industrial and Engineering Chemistry Research, Vol. 39, pp. 620625 (2000). doi: 10.1021/ie9905310
  16. [16] Pedernera, M., Mallada, R., Menéndez, M. and Santamaria, J., “Simulation of an Inert Membrane Reactor for the Synthesis of Maleic Anhydride,” AIChE Journal,Vol.46,pp.24892498(2000). doi:10.1002/ aic.690461215
  17. [17] Rodríguez, M. L., Ardissone, D. E., Lemonidou, A. A., Heracleous, E., López, E., Pedernera, M. N. and Borio, D. O., “Simulation of a Membrane Reactor for the Catalytic Oxidehydrogenation of Ethane,” Industrial and Engineering Chemistry Research, Vol. 48, pp. 10901095 (2009). doi: 10.1021/ie800564v
  18. [18] Froment, G. F. and Bischoff, K. B., Chemical Reactor Analysis and Design, Wiley, New York, USA(1990).


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.