Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Anmol Dubey1, Piyush Khosla1, Himanshu Kumar Singh1, Vishal Katoch1, Devendra Kumar2 and Pallav Gupta  1

1Department of Mechanical and Automation Engineering, A.S.E.T., Amity University, Uttar Pradesh, Noida-201313, India
2Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India


 

Received: December 14, 2015
Accepted: April 25, 2016
Publication Date: September 1, 2016

Download Citation: ||https://doi.org/10.6180/jase.2016.19.3.08  

ABSTRACT


The present paper reports a review on study of various processing routes and related mechanical properties of silicon carbide reinforced Metal Matrix Nanocomposites (MMNCs). Physical and mechanical properties that can be obtained with Metal Matrix Nanocomposites (MMNCs) have made them potential candidate for use in aerospace and automobile applications. MMNCs are made by dispersing a ceramic material into a metallic matrix. MMNCs have attracted attention as a result of their low costs and enhanced properties. Various reinforcements used are carbides, nitrides, and oxides. MMNCs manufacturing can be broken into three types - solid, liquid and vapor. Solid state methods include powder metallurgy, liquid state method includes stir casting and squeeze casting whereas vapor state method includes physical vapor deposition and chemical vapor deposition. In comparison with conventional polymer matrix composites, MMNCs are resistant to fire, can operate in wider range of temperatures, do not absorb moisture, have better electrical and thermal conductivity, are resistant to radiation damage, and do not display outgassing. It is expected thatthesiliconcarbidereinforcedmetalmatrixnanocompositeswillbeapotentialcandidateforheavy duty applications.


Keywords: Metal Matrix Nanocomposites (MMNCs), Powder Metallurgy (P/M), Stir Casting, Mechanical Behavior


REFERENCES


  1. [1] Miracle,D.B.,“Metal Matrix Composites From Science to Technological Significance,” Comp Sci Tech, Vol. 65, pp. 25262540 (2005). doi: 10.1016/j.comp scitech.2005.05.027
  2. [2] Rosso, M., “Ceramic and Metal Matrix Composites: Routes and Properties,” J Mater Proc Tech, Vol. 175, pp. 364375 (2006). doi: 10.1016/j.jmatprotec.2005. 04.038
  3. [3] Kaczmar, J. W., Pietrzak, K. and Wøosin Âski, W., “The Production and Application of Metal Matrix
    Composite Materials,” J Mater Proc Tech,Vol.106,pp. 5867 (2000). doi: 10.1016/S0924-0136(00)00639-7
  4. [4] Ralph, B., Yuen, H. C. and Lee, W. B., “The Processing of Metal Matrix Composites-an Overview,”J Ma ter Proc Tech, Vol. 63, pp. 339353 (1997). doi: 10. 1016/S0924-0136(96)02645-3
  5. [5] Hemanth, J., “Development and Property Evaluation of Aluminum Alloy Reinforced with Nano-ZrO2Metal Matrix Composites (NMMCs),” Mater Sci & Engg A, Vol. 507, pp. 110113 (2009). doi: 10.1016/j.msea. 2008.11.039
  6. [6] Harrigan, Jr. W. C., “CommercialProcessing of Metal Matrix Composites,” Mater Sci Engg A, Vol. 244, pp. 7579 (1998). doi: 10.1016/S0921-5093(97)00828-9
  7. [7] Gupta, P., Kumar, D., Parkash, O. and Jha, A. K., “Hardness and Wear Behavior of CoO Doped FeAl2O3 Metal Matrix Composite (MMC) Synthesized via P/M (P/M) Technique,” Adv Mater Res, Vol. 585, pp. 584589 (2012). doi: 10.4028/www.scientific.net/ AMR.585.584
  8. [8] Kumar, U. J. P., Gupta, P., Jha, A. K. and Kumar, D., “Closed Die Deformation Behavior of Cylindrical Iron-Alumina Metal Matrix Composites During Cold Sinter Forging,” J Inst Eng India Series D (2015). doi: 10.1007/s40033-015-0089-1
  9. [9] Sutradhar, G., Jha, A.K.and Kumar,S.,“Cold Forging of Sintered Iron-powder Preforms,” Journal of Material Processing Technology, Vol. 51, pp. 369386 (1995). doi: 10.1016/0924-0136(94)01599-V
  10. [10] Rahimian, M., Ehsani, N., Parvin, N. and Baharvandi, H.R.,“The Effect of Particle Size, Sintering Temperature and Sintering Time on the Properties of Al-Al2O3 Composites, Made by P/M,” J Mater Proc Tech, Vol. 209, pp. 53875393 (2009). doi: 10.1016/j.jmatprotec. 2009.04.007
  11. [11] Moustafa, S. F., Abdel-Hamid, Z. and Abd-Elhay, A. M., “Copper Matrix SiC and Al2O3 Particulate Composites by P/M,” Technique Mater Let, Vol. 53, pp. 244249(2002).doi:10.1016/S0167-577X(01)00485-2
  12. [12] Gupta, P., Kumar, D., Parkash, O. and Jha, A. K., “Structural and Mechanical Behaviour of 5% Al2O3reinforced Fe Metal Matrix Composites (MMCs) Produced by P/M (P/M) Route,” Bull Mater. Sci., Vol. 36, No. 5, pp. 859868 (2013). doi: 10.1007/s12034-0130545-1
  13. [13] Gupta, P., Kumar, D., Parkash, O. and Jha, A. K., “Effect of Sintering on Wear Characteristics of Fe-Al2O3 Metal Matrix Composites,” Proc Inst Mech Eng Part J: J Engg Trib, Vol. 228, No. 3, pp. 362368 (2013). doi: 10.1177/1350650113508934
  14. [14] Gupta,P.,Kumar,D.,Quraishi,M.A.and Parkash,O., “Corrosion Behavior of Al2O3 Reinforced Fe Metal Matrix Nanocomposites Produced by P/M Technique,” Adv Sci Engg Med, Vol. 5, No. 4, pp. 366370 (2013). doi: 10.1166/asem.2013.1265
  15. [15] Gupta,P.,Kumar,D.,Quraishi,M.A.andParkash,O., “Effect of Sintering Parameters on the Corrosion Characteristics of Iron-Alumina Metal Matrix Nanocomposites,” J Mater Env Sci, Vol. 6, No. 1, pp. 155167 (2015).
  16. [16] Gupta, P., Kumar, D., Quraishi, M.A. and Parkash,O., “Effect of Cobalt Oxide Doping on the Corrosion Behavior of Iron-Alumina Metal Matrix Nanocomposites,” Adv Sci Engg Med, Vol. 5, No. 12, pp. 1279 1291 (2013). doi: 10.1166/asem.2013.1427
  17. [17] Gupta, P., Kumar, D., Parkash, O. and Jha, A. K., “Sintering and Hardness Behavior of Fe-Al2O3 Metal Matrix Nanocomposites Prepared by P/M,” J Comp, ArticleID145973,pp.110(2014).doi:10.1155/2014/ 145973
  18. [18] Jha,P.,Gupta,P.,Kumar,D.and Parkash,O.,“Synthesis and Characterization of FeZrO2 Metal Matrix Composites,” J Comp Mater, Vol. 48, No. 17, pp. 2107 2115 (2014). doi: 10.1177/0021998313494915
  19. [19] Surappa, M. K. and Rohatgi, P. K., “Preparation and Properties of Cast Aluminium-cerarnic Particle Composites,” J Mater Sci, Vol. 16, No. 4, pp. 983993 (1981). doi: 10.1007/BF00542743
  20. [20] Xiong,H.,Xiong,B.,Yu,H.,Zhao,J.,Zheng,Y.,Luo, Y., Xu, Z. and Zhu, P., “Effects of Binders on Binders on Dimensional Accuracy and Mechanical Properties of Sic Particulates Performs Fabricated by Selective Laser Sintering,” Composites Part B., Vol. 44, No. 1, pp. 480483 (2013). doi: 10.1016/j.compositesb.2012.04.003
  21. [21] Pedersen, H. and Elliott Simon, D., “Studying Chemical Vapor Deposition Processes with Theoretical Chemistry,” Th. Chemistry Acc., Vol. 5, No. 133, p. 1476 (2014). doi: 10.1007/s00214-014-1476-7
  22. [22] Stegmuller, A. and Tonner, R., “AQuantum Chemical Descriptor for CVD Precursor Design,” Chem. Vap. Deposition, Vol. 21, No. 7-8-9, pp. 161165 (2015). doi: 10.1002/cvde.201504332
  23. [23] Mubarak,A.,Hamzah,E.andToff,M.R.M.,“Review of Physical Vapour Deposition (pvd) Techniques for HardCoating,”JMekanikal,Vol.20,pp.4251(2005).
  24. [24] Rahman Md. Habibur and Mamun Al Rashed, H. M., “Characterization of Carbide Reinforced Aluminium Matrix Composites,” Procedia Engg,Vol.90, pp. 103 109 (2014). doi: 10.1016/j.proeng.2014.11.821
  25. [25] Rajan,T.P.D.,Pillai,R.M.andPai,B.C.,“Characterization of Centrifugal Cast Functionally Graded Aluminium-Silicon Carbide Metal Matrix Composites,”J. Mater. Sci., Vol. 33, No. 14, pp. 34913503 (2014).
  26. [26] Das, A.and Sandip,P.,“Effect of Graphene Nanoplate and Silicon Carbide Nanoparticle Reinforced on Mechanical and Tribiological Properties of Spark Plasma Sintered Magnesium Matrix Composites,” J. Mater. Sci. Tech.,Vol.30,No.11,pp.10591070(2014).doi: 10.1016/j.jmst.2014.08.002
  27. [27] Mishra Kumar, S., Bishwas, S. and Satapathy, A., “A Study on Processing, Characterization and Erosion Wear Behaviour of Silicon Carbide Particle Filled ZA27 Metal Matrix Composites,” Ac. Research J., Vol.1, pp. 6576 (2012). doi: 10.1016/j.matdes.2013.10.069
  28. [28] Pawar, P. B. and Utpat, A., Abhay Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite for Spur Gear Procedia Mater. Sci., Vol. 6, pp. 11501156 (2014). doi: 10.1016/j.mspro. 2014.07.187
  29. [29] Feest, E., A-Metal Matrix Composites for Industrial Application Mat.and Design, Vol. 7, No. 2, pp. 5864 (1986). doi: 10.1016/S0261-3069(86)80002-4
  30. [30] Suryanarayanan, K. R. and Praveen, S., “Raghuraman Silicon Carbide Reinforced Aluminium Metal Matrix Composites for Aerospace Applications: Literature Review,” Intnl. J. Innov. Research in Sci. Engg. & Tech., Vol. 2, No. 11, pp. 63366344 (2013).
  31. [31] Casati, R. and Vedani, M., Metal Matrix Composites Reinforced by Nano-Particles  a Review Metals, Vol. 4, No. 1, pp. 6583 (2014). doi: 10.3390/met401 0065
  32. [32] Chicina,I.andBrânduan,L.,ResearchesinP/MMater. Sci. Forum, Vol. 672, pp. 311 (2011).


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.