Kumaresan M. This email address is being protected from spambots. You need JavaScript enabled to view it.1, Sathish S.2 and Karthi N.3

1Kalaignarkarunanidhi Institute of Technology, Coimbatore-641402, Indian
2KPR Institute of Engineering and Technology, Coimbatore-641407, Indian
3Sri Krishna College of Technology, Coimbatore-641042, Indian


Received: April 10, 2015
Accepted: August 23, 2015
Publication Date: September 1, 2015

Download Citation: ||https://doi.org/10.6180/jase.2015.18.3.09  


This present work evaluated the effect of fiber orientation on mechanical properties of sisal fiber reinforced epoxy composites. In this work sisal fiber is used as reinforcement which treated with NaOH solution for enhancing the bonding strength between fiber and resin by removing moisture contents. Samples of different orientations of sisal fiber reinforced composites were fabricated by compression molding and investigated their mechanical properties like tensile strength and flexural strength. The work of this experimental study has been carried out to determine the mechanical properties due to the effect of sisal fiber orientations such as 0°/90°, 90° and ±45° orientation. The results of this study indicate the orientation 90° shows the better mechanical properties compare than 0°/90° and ±45°.

Keywords: Sisal Fiber, Epoxy Resin, Compression Molding, Fiber Orientation


  1. [1] Abrate, S., Impact on Composite Structures, Cambridge University Press, Cambridge, UK (1998). doi: 10.1017/ CBO9780511574504
  2. [2] John, K. and Venkata Naidu, S., “Chemical Resistance Studies of Sisal/Glass., Fiber Hybrid Composites,” J. Rein. Plast. Comp. Vol. 26, No. 4, pp. 373376 (2007). doi: 10.1177/0731684406072524
  3. [3] Abdul khalil, H. P. S., Hanida, S., Kang, C. W. and Nikfuaad, N. A., “Agrohybrid Composite: the Effects on Mechanical and Physical Properties of Oil Palm Fiber 14 International,” Journal of Fiber and Textile Research, Vol. 1, No. 1, pp. 1114 (2011). doi: 10.1177/ 0731684407070027
  4. [4] Noorunnisha Khanam, P., Mohan Reddy, M., Raghu, K., John, K. and Venkata Naidu, S., “Tensile, Flexural and Compressive Properties of Sisal/Silk Hybrid Composites,” J. Rein. Plast. Comp., Vol. 26, No. 9, pp. 10651069 (2007). doi: 10.1177/0731684407079347
  5. [5] Sreenivasulu, S., Vijay Kumar Reddy, K., Varada Rajulu, A. and Ramachandra Reddy, G., “Chemical Resistance and Tensile Properties of Polycarbonate Toughened EpoxyBamboo Fiber Composites,” Bull. Pure App. Sci., Vol. 25c, No. 2, pp. 137142 (2006). doi: 10.1177/0731684403024571
  6. [6] Botev, M., Betchev, H., Bikiaris, D. and Panayiotou, C., Journal of Applied Polymer Science, Vol. 74, p. 523 (1999). doi: 10.1002/(SICI)1097-4628(19991017) 74:33.0.CO;2-R
  7. [7] Gassan, J., A Composites Part  a: Applied Science and Manufacturing, Vol. 33, No. 3, p. 369 (2002). doi: 10.1016/S1359-835X(01)00116-6
  8. [8] Ku, H., Wang, H., Pattarachaiya Koop, N. and Trada, M. A., Composites Part B-engg. Vol. 42, p. 856 (2011). doi: 10.1016/j.compositesb.2011.01.010
  9. [9] Joseph, P. V., Joseph, K. and Thomas, S., The Effect of Processing Variables on the Physical and Mechanical Properties of Short Sisal Fibre Reinforced Polypropylene Composites. Compositesn Science and Technology, Oxford (1999, in press). doi: 10.1016/S0266- 3538(99)00024-X
  10. [10] Glass Hybrid Reinforced Polyester Composites, J. Rein. Plast. Comp., Vol. 26, No. 2, pp. 203218 (2007). Girisha, C., Sanjeevamurthy, Gunti Rangasrinivas: Tensile Properties of Natural Fiber Reinforced PLA-Hybrid Composites, International Journal of Modern Engineering Research, Vol. 2, pp. 471474 (2012). doi: 10.1177/0731684407070027
  11. [11] Joseph, K., Thomas, S. and Paul, A., “Effect of Surface Treatments on the Electrical Properties of Low-density Polyethylene Composites Reinforced with Short Sisal Fibers,” Composites Science and Technology, Vol. 57, pp. 6779 (1997). doi: 10.1016/S0266-3538(96)00109-1
  12. [12] Zhong, J. and Lv, C. Wei, Mechanical Properties of Sisal Fibre Reinforced Ureaformaldehyde (2007). doi: 10.3144/expresspolymlett.2007.93
  13. [13] Resin Composites, eXPRESS Polymer Letters, Vol. 1, No. 10, pp. 681687. doi: 10.3144/expresspolymlett. 2007.93
  14. [14] Jarukumjorn, K. and Nitinnat, S., Effect of Glass Fiber Hybridization on Properties of Sisal Fiberpolypropylene Composites,” Composites: Part B, Vol. 40, No. 7, pp. 623627 (2009). doi: 10.1016/j.compositesb.2009. 04.007
  15. [15] Joseph, K. and Filho, R. D. T., A Review on Sisal Fiber Reinforced Polymer Composites, Revista Brasileira de Engenharia Agrícola e Ambiental, Vol. 3, No. 3, pp.367379 (1999). doi: 10.1590/S1415-436620010002 00009
  16. [16] Ku, H., Wang, H., Pattarachaiyakoop, N. and Trada, M., A Review on the Tensile Properties of Natural Fibre Reinforced Polymer Composites, Composites: Part B (2011). doi: 10.1016/j.compositesb.2011.01.010
  17. [17] Thomas, S., “Short Pineapple-leaf-fiber-reinforced Low-density Polyethylene Composites,” Journal of Applied Polymer Science, Vol. 57, pp. 841864 (1996). doi: 10.1002/app.1995.070570708
  18. [18] Preston, rd, Observed Fine Structure in Plant Fibres, in “Fibre Structure”, Hearle, Jws and Peters, rh (eds), Textile Institute, Butterworths, Chapter 7 (1963). doi: 10.1016/B978-1-4832-0061-3.50013-3