Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Huang-Wen Huang This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Innovative Information and Technology, Langyang Campus, Tamkang University, Tamsui, Taiwan 251, R.O.C.


 

Received: November 6, 2014
Accepted: July 16, 2015
Publication Date: September 1, 2015

Download Citation: ||https://doi.org/10.6180/jase.2015.18.3.08  


ABSTRACT


Radiofrequency ablation (RFA) has been used successfully in the treatment of liver tumors. However, current RFA procedures are less effective against tumors that are large. The purpose of this study was to investigate internally cooled multiple-electrode technique with radio-frequency ablation (RFA) which technique could provide larger thermal lesion by using computer simulation and to determine optimal RF electrode spacing based on coagulation necrosis zone volume. Multiple electrically independent electrodes have been powering up by switching to the next electrode at a predetermined time interval of certain time period. As to computer models, the mathematical equations use Laplace equation of electric field calculation, and Bio-heat transfer equation of calculation temperature field. Numerical methods will consider Gauss-Seidel iteration to obtain 3-D finite difference solutions of a set of partial differential equations for a simple three-dimensional cubic geometry model. Maximum tissue temperature (Tmax) is used as a critical index for reaching thermal lesion formation during RFA and threshold temperature (Tthresh) is used to estimate coagulation zone volume. Cylindrical RF cool-tip electrode is internally cooled at constant water temperature. Results showed several clover-shaped resultant coagulation necrosis and enlarged thermal lesions which were consistent with experimental results


Keywords: Multiple-electrode, Internally-cooled Electrode, Radio frequency Ablation, Coagulation Necrosis, Bio-heat Transfer


REFERENCES


  1. [1] Scott Gazelle, G. and Nahum Goldberg, S., “Luigi Solbiati, Tito Livraghi, Tumor Ablation with Radiofrequency Energy,” Radiology Vol. 217, pp. 633646 (2000). doi: 10.1148/radiology.217.3.r00dc 26633
  2. [2] Lee, J. M., Kim, Y. K., Kim, S. W., Han, J. K., Kim, S. H. and Choi, B. I., “Combined Radiofrequency Ablation and Acetic Acid Hypertonic Saline Solution Instillation: An In Vivo Study of Rabbit Liver,” Korean J Radiol, Vol. 5, pp. 3138 (2004). doi: 10.3348/kjr.2004. 5.1.31
  3. [3] Nahum Goldberg, S., Scott Gazelle, G., Halpern, E. R., Rittman, W. J., Mueller, P. R. and Rosenthal, D. I., “Radiofrequency Tissue Ablation: Importance of Local Temperature Along the Electrode Tip Exposure in Determining Lesion Shape and Size,” Acad Radiol, Vol. 3, pp. 212218 (1996). doi: 10.1016/S1076-6332 (96)80443-0
  4. [4] Rosenthal, D. I., Hornicek, F. J., Torriani, M., Gebhardt, M. C. and Mankin, H. J., “Osteoid Osteoma: Percutaneous Treatment with Radiofrequency Energy,” Radiology, Vol. 229, 171175 (2003). doi: 10.1148/radiol. 2291021053
  5. [5] Lencioni, R. A., Allgaier, H. P., Cioni, D., et al., “Small Hepatocellular Carcinoma in Cirrhosis: Randomized Comparison of Radio-frequency Thermal Ablation Versus Percutaneous Ethanol Injection,” Radiology, Vol. 228, pp. 235240 (2003). doi: 10.1148/radiol.228102 0718
  6. [6] Akeboshi, M., Yamakado, K., Nakatsuka, A., et al., “Percutaneous Radiofrequency Ablation of Lung Neoplasms: Initial Therapeutic Response,” J Vasc Interv Radiol, Vol. 15, pp. 463470 (2004). doi: 10.1097/01. RVI.0000126812.12853.77
  7. [7] Hwang, J. J., Walther, M. M., Pautler, S. E., et al., “Radio Frequency Ablation Of Small Renal Tumors: Intermediate Results,” J Urol, Vol. 171, pp. 18141818 (2004). doi: 10.1097/01.ju.0000119905.72574.de
  8. [8] Lin, S.-M., “Local Ablation for Hepatocellular Carcinoma in Taiwan,” Liver Cancer, Vol. 2, pp. 7383 (2013). doi: 10.1159/000315237
  9. [9] Kosari, K., Gomes, M., Hunter, D., Hess, D. J., Greeno, E. and Sielaff, T. D., “Local, Intrahepatic and Systemic Recurrence Patterns after Radiofrequency Ablation of Hepatic Malignancies,” J Gastrointest Surg, Vol. 6, pp. 255263 (2002). doi: 10.1016/S1091-255X(02)00002-1
  10. [10] Kuvshinoff, B. W. and Ota, D. M., “Radiofrequency Ablation of Liver Tumors: Influence of Technique and Tumor Size,” Surgery, Vol. 132, pp. 605611 (2002). doi: 10.1067/msy.2002.127545
  11. [11] Dodd, G. D. 3rd, Frank, M. S., Aribandi, M., Chopra, S. and Chintapalli, K. N., “Radiofrequency Thermal Ablation: Computer Analysis of the Size of the Thermal Injury Created by Overlapping Ablations,” AJR, Vol. 177, pp. 777782 (2001). doi: 10.2214/ajr.177.4. 1770777
  12. [12] Laeseke, P. F., Frey, T. M., Brace, C. L., Sampson, L. A., Winter, T. C., Ketzler, J. R. and Lee, F. T., “Multiple-electrode Radiofrequency Ablation of Hepatic Malignancies: Initial Clinical Experience,” AJR, Am. J. Roentgenol, Vol. 188, pp. 14851494 (2007). doi: 10. 2214/AJR.06.1004
  13. [13] Goldberg, S. N., Solbiati, L., Hahn, P. F., et al., Largevolume Tissue Ablation with Radio Frequency by Using a Clustered, Internally Cooled Electrode Technique: Laboratory and Clinical Experience in Liver Metastases,” Radiology, Vol. 209, pp. 371379 (1998). doi: 10.1148/radiology.209.2.9807561
  14. [14] Laeseke, P. F., Sampson, L. A., Haemmerich, D., Brace, C. L., Fine, J. P., Frey, T. M., Winter III, T. C., Lee, F. T., “Multiple-Electrode Radiofrequency Ablation Creates Confluent Areas of Necrosis: In Vivo Porcine Liver Results,” Radiology, Vol. 241, No. 1, pp. 116124 (2006). doi: 10.1148/radiol.2411051271
  15. [15] Solazzo, S. A., Liu, Z., Lobo, S. M., Ahmed, M., Hines-Peralta, A. U., Lenkinski, R. E. and Goldberg, S. N., “Radiofrequency Ablation: Importance of Background Tissue Electrical Conductivity an Agar Phantom and Computer Modeling Study,” Radiology, Vol. 236, pp. 495502 (2005). doi: 10.1148/radiol.236204 0965
  16. [16] Lobo, S. M., Liu, Z. J., Yu, N. C., Humphries, S., Ahmed, M., Cosman, E. R., Lenkinski, R. E., Goldberg, W. and Goldberg, S. N., “RF Tumour Ablation: Computer Simulation and Mathematical Modelling of the Effects of Electrical and Thermal Conductivity,” Int J Hyperthermia, Vol. 21, pp. 199213 (2005). doi: 10. 1080/02656730400001108
  17. [17] Haemmerich, D., Staelin, T., Tungjitkusolmun, S., Lee, Jr., F. T., Mahvi, D. M. and Webster, J. G., “Hepatic Bipolar Radio-Frequency Ablation between Separated Multiprong Electrodes,” IEEE Transactions On Biomedical Engineering, Vol. 48, No. 10 (2001). doi: 10. 1109/10.951517
  18. [18] Labonte, S., “A Computer Simulation of Radio-frequency Ablation of the Endocardium,” IEEE Trans Biomed Eng, Vol. 41, pp. 883890 (1994). doi: 10. 1109/10.312096
  19. [19] Labonte, S., “Numerical Model for Radio-frequency Ablation of the Endocardium and its Experimental Validation,” IEEE Trans Biomed Eng, Vol. 41, pp. 108 115 (1994). doi: 10.1109/10.284921
  20. [20] Vahid Shahidi, A. and Savard, P., “A Finite Element Model for Radiofrequency Ablation of the Myocardium,” IEEE Transactions On Biomedical Engineering, Vol. 41, No. 10 (1994). doi: 10.1109/10.324528
  21. [21] Scheinman, Ed., M. M., Catheter Ablation of Cardiac Arrhythmias, Boston: Martinus Nijhoff Publ. (1988).
  22. [22] Chang, I. A. and Nguyen, U. D., “Thermal Modeling of Lesion Growth with Radiofrequency Ablation Devices,” Biomed Eng Online, Vol. 3, p. 27 (2004). doi: 10.1109/TBME.2004.827545
  23. [23] Chang, I., “Finite Element Analysis of Hepatic Radiofrequency Ablation Probes Using Temperature- Dependent Electrical Conductivity,” Biomed Eng Online, Vol. 2, p. 12 (2003).
  24. [24] Huang, H.-W., “Influence of Blood Vessel on the Thermal Lesion Formation during Radiofrequency Ablation for Liver Tumors,” Med. Phys., Vol. 40, No. 7, (2013). doi: 10.1118/1.4811135
  25. [25] Huang, H.-W., Liauh, C.-T., Chou, C.-Y., Shih, T.-C. and Lin, W.-L., “A Fast Adaptive Power Scheme Based on Temperature Distribution and Convergence Value for Optimal Hyperthermia Treatment,” Appl. Therm. Eng., Vol. 37, pp. 103111 (2012). doi: 10.1016/j.appl thermaleng.2011.11.003
  26. [26] Huang, H.-W., Liauh, C.-T., Horng, T.-L., Shih, T.-C., Chiang, C.-F. and Lin, W.-L., “Effective Heating for Tumors with Thermally Significant Blood Vessels during Hyperthermia Treatment,” Appl. Therm. Eng., Vol. 50, pp. 837847 (2013). doi: 10.1016/j.applthermaleng. 2012.07.018
  27. [27] Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J.-Z., Vorperian, V. R. and Webster, J. G., “Finite Element Analyses of Uniform Current Density Electrodes for Radio-frequency Cardiac Ablation,” IEEE Trans. Biomed. Eng., Vol. 47, No. 1, pp. 3240 (2000). doi: 10.1109/ 10.817617
  28. [28] “Cool-tipTM RF Ablation System,” Retrieved 21 May (2013) (Available URL: http://www.cool-tiprf.com/ 4minute.html).
  29. [29] Lobo, S. M., Afzal, K. S., Ahmed, M., Kruskal, J. B., Lenkinski, R. E. and Goldberg, S. N., “Radiofrequency Ablation: Modeling the Enhanced Temperature Response to Adjuvant NaCl Pretreatment,” Radiology, Vol. 230, pp. 175182 (2004). doi: 10.1148/radiol.230 1021512
  30. [30] McGahan, J. P. and Dodd, III, G. D., “Radiofrequency Ablation of Liver Tumors: Current Status,” AJR, Am. J. Roentgenol., Vol. 176, pp. 316 (2001). doi: 10.2214/ ajr.176.1.1760003
  31. [31] Goldberg, S. N., Gazelle, G. S. and Mueller, P. R., “Thermal Ablation Therapy for Focal Malignancy: A Unified Approach to Underlying Principles, Techniques and Diagnostic Imaging Guidance,” AJR, Am. J. Roentgenol., Vol. 174, pp. 323331 (2000). doi: 10. 2214/ajr.174.2.1740323
  32. [32] Lapidus, L. and Pinder, G. F., Numerical Solution of Partial Differential Equations in Science and Engineering (Wiley-Interscience, New York) (1982).
  33. [33] Chen, Z.-P., Roemer, R. B. and Cetas, T. C., “Three-dimensional Simulations of Ferromagnetic Implant Hyperthermia,” Med. Phys., Vol. 19, No. 4, pp. 989997 (1992). doi: 10.1118/1.596787
  34. [34] Huang, H. W., “Simulation of Large Vessels in Hyperthermia Therapy,” M. S. Thesis, University of Arizona, Tucson, AZ (1992).
  35. [35] Chen, Z. P., “A Three-dimensional Treatment Planning Program for Hyperthermia,” Ph.D. Dissertation, University of Arizona, Tucson, AZ (1989).
  36. [36] Huang, H.-W., Roemer, R. B. and Chen, Z. P., “A Counter Current Vascular Network Model of Heat Transfer in Tissues,” ASME J. Biomech. Eng., Vol. 118, pp. 120129 (1996). doi: 10.1115/1.2795937
  37. [37] Haemmerich, D. G., “Finite Element Modeling of Hepatic Radio Frequency Ablation,” Ph.D. Dissertation, University of Wisconsin, Madison (2001). doi: 10.1109/ TBME.2002.800790
  38. [38] Ebbini, E. S., Umemura, S.-I., Ibbini, M. and Cain, C. A., “A Cylindricalsection Ultrasound Phased-array Applicator for Hyperthermia Cancer Therapy,” IEEE Trans. Biomed. Eng., Vol. 35, pp. 561572 (1988). doi: 10. 1109/58.8034


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.