Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Lung-Jieh Yang This email address is being protected from spambots. You need JavaScript enabled to view it.1, Kuan-Chun Liu1 and Wei-Chung Lin1

1Department of Mechanical & Electromechanical Engineering, Tamkang University, Tamsui, Taiwan 251, R.O.C.


 

Received: April 7, 2014
Accepted: July 31, 2014
Publication Date: September 1, 2014

Download Citation: ||https://doi.org/10.6180/jase.2014.17.3.02  


ABSTRACT


This paper presents the comparison between the force balance method and the surface energy method in deriving surface tension forces of some microelectromechanical systems (MEMS) problems. For studying the force balance of the capillary rise in the wick structure of heat pipes or heat spreaders, not only the surface tension at the three-phase interfaces but also the free surfaces should be carefully considered. Meanwhile the intrinsic scalar quantity of surface energy method proves its systematic feature without too much physical insight into the surface tension issues. Finally the authors used the surface energy method to study the capillary stiction of a cantilever beam during its drying process. A surface tension-driven cantilever array using for flapping micro-air-vehicles (FMAVs) is exemplified to justify the theoretical prediction in a static manner.


Keywords: Surface Tension, Free Surface, Cantilever, Stiction


REFERENCES


  1. [1] de Genes, P. G., “Wetting: Statics and Dynamics,” Rev. Mod. Phys., Vol. 57, pp. 827890 (1985). doi: 10. 1103/RevModPhys.57.827
  2. [2] Israelachvili, J. N., Intermolecular and Surface Forces, Academic, London, p. 120 (1985).
  3. [3] Madou, M., Fundamentals of Microfabrication, 2nd Ed., CRC, New York, p. 584 (2002).
  4. [4] Sobolev, V. D., Churaev, N. V., Velarde, M. G. and Zorin, Z. M., “Surface Tension and Dynamic Contact Angle of Water in Thin Quartz Capillaries,” J. Colloid Interface Sci., Vol. 222, No. 1, pp. 5154 (2000). doi: 10.1006/jcis.1999.6597
  5. [5] Yang, L. J., Yao, T. J. and Tai, Y. C., “The Marching Velocity of the Capillary Meniscus in a Microchannel,” J. Micromech. Microeng., Vol. 14, No. 2, pp. 220225 (2004). doi: 10.1088/0960-1317/14/2/008
  6. [6] Chan, W. K. and Yang, C., “Surface-Tension-Driven Liquid-Liquid Displacement in a Capillary,” J. Micromech. Microeng., Vol. 15, No. 9, pp. 17221728 (2005). doi: 10.1088/0960-1317/15/9/014
  7. [7] Tas, N., Sonnenberg, T., Jansen, H., Legtenberg, R. and Elwenspoek, M., “Stiction in Surface Micromachining,” J. Micromech. Microeng., Vol. 6, No. 4, pp. 385397 (1996). doi: 10.1088/0960-1317/6/4/005
  8. [8] Wang, H. J., Tsai, H. C., Chen, H. K. and Shing, T. K., “Capillary of Rectangular Micro Grooves and Their Applications to Heat Pipes,” Tamkang Journal of Science and Engineering, Vol. 8, No. 3, pp. 249255 (2005). doi: 10.6180/jase.2005.8.3.12
  9. [9] Yang, L. J. and Liu, K. C., “Surface Tension-Driven Micro Valves with Large Rotating Stroke,” Tamkang Journal of Science and Engineering, Vol. 10, No. 2, pp. 141146 (2007). doi: 10.6180/jase.2007.10.2.08
  10. [10] Mastrangelo, C. H. and Hsu, C. H., “Mechanical Stability and Adhesion of Microstructures under Capillary Forces- Part I: Basic Theory,” Journal of Microelectromechanical Systems, Vol. 2, No. 1, pp. 3343 (1993). doi: 10.1109/84.232593
  11. [11] Mastrangelo, C. H. and Hsu, C. H., “A Simple Experimental Technique for the Measurement of the Work of Adhesion of Microstructures,” Technical Digest - IEEE Solid-State Sensor and Actuator Workshop, pp. 208212 (1992). doi: 10.1109/SOLSEN.1992.228291
  12. [12] Mastrangelo, C. H. and Hsu, C. H., “Mechanical Stability and Adhesion of Microstructures under Capillary Forces- Part II: Experiments,” Journal of Microelectromechanical Systems, Vol. 2, No. 1, pp. 4455 (1993). doi: 10.1109/84.232594
  13. [13] Fortes, M. A., “Axisymmetric Liquid Bridges between Parallel Plates,” J. Colloid and Interface Science, Vol. 88, No. 2, pp. 338351 (1982). doi: 10.1016/0021- 9797(82)90263-6
  14. [14] Gere, J. M. and Timoshenko, S. P., Mechanics of Materials, 2nd ed., Brooks/Cole Engineering Division, Monterey, California, p. 736 (1984). doi: 10.1115/ 1.3269380
  15. [15] Yang, L. J., Jan, D. L. and Lin, W. C., “Steel-Based Bionic Actuators for Flapping Micro-Air-Vehicles,” Micro and Nano Letters, Vol. 8, No. 10, pp. 686690 (2013). doi: 10.1049/mnl.2013.0316
  16. [16] Bico, J., Roman, B., Moulin, L. and Boudaoud, A., “Elastocapillary Coalescence in Wet Hair,” Nature, Vol. 432, p. 690 (2004). doi: 10.1038/432690a