Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

C. Zhuo This email address is being protected from spambots. You need JavaScript enabled to view it.1,2,3, H. Dong1,2,3 and L. Xuan1,2,3

1School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, P.R. China
2Science and Technology on Inertial Laboratory, Beijing, P.R. China
3Fundamental Science on Novel Inertial Instrument & Navigation System Technology Laboratory, Beijing, P.R. China


 

Received: November 22, 2013
Accepted: May 24, 2014
Publication Date: September 1, 2014

Download Citation: ||https://doi.org/10.6180/jase.2014.17.3.01  


ABSTRACT


To avoid the broadening of Zeeman resonances of the vector atomic magnetometer working in an unshielded environment, a real-time magnetic compensation is necessary. A three dimensional mini spherical compensation system is presented, which can be used for a compact atomic magnetometer to realize an ultra-high precision field measurement. Based on the field gradient method, parameters are optimized to obtain a uniformity of 10-3 over the region of one half radius with a good tolerance on dimensional variations. A prototype has been built and the measurement by traditional fluxgate magnetometer and the integration into the atomic system both demonstrate the validity of the design.


Keywords: Spherical Compensation Coils, Field Gradient Method, Unshielded Atomic Magnetometer, Vector Field Measurement


REFERENCES


  1. [1] Dang, H., Maloof, A. and Romalis, M., “Ultrahigh Sensitivity Magnetic Field and Magnetization Measurements with an Atomic Magnetometer,” Appl. Phys. Lett., Vol. 97, pp. 151110 13 (2010). doi: 10.1063/1.3491215
  2. [2] Allred, J., Lyman, R., Kornack, T., et al., “High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation,” Phys. Rev. Lett., Vol. 89, pp. 130801 14 (2002). doi: 10.1103/PhysRevLett.89. 130801
  3. [3] Savukov, I. and Romalis, M., “Effects of Spin-Exchange Collisions in a High-Density Alkali-Metal Vapor in Low Magnetic Fields,” Phys. Rev. A, Vol. 7, pp. 023405 18 (2005). doi: 10.1103/PhysRevA.71. 023405
  4. [4] Seltzer, S. and Romalis, M., “Unshielded Three-Axis Vector Operation of a Spin-Exchange-Relaxation-Free Atomic Magnetometer,” Appl. Phys. Lett., Vol. 85, pp. 48054806 (2004). doi: 10.1063/1.1814434
  5. [5] Dong, H., Fang, J., Zhou, B., et al., “Three Dimensional Atomic Magnetometery,” Eur. Phys. J. AP, Vol. 57, p. 21004 (2012). doi: 10.1051/epjap/2011110392
  6. [6] Romalis, M. and Dang, H., “Atomic Magnetometers for Materials Characterization,” Materials Today, Vol. 14, pp. 258262 (2011). doi: 10.1016/S1369-7021 (11)70140-7
  7. [7] Balogh, A., “Planetary Magnetic Field Measurements: Missions and Instrumentation,” Space Sci. Rev., Vol. 15, pp. 2397 (2010). doi: 10.1007/s11214-010- 9643-1
  8. [8] Fang, J. and Qin, J., “In Situ Triaxial Magnetic Field Compensation for the Spin-Exchange-Relaxation-Free Atomic Magnetometer,” Rev. Sci. Instrum., Vol. 83, pp. 103104 17 (2012). doi: 10.1063/1.4756046
  9. [9] Seltzer, S., Developments in Alkali-Metal Atomic Magnetometry, Ph. D. Desertation, Princeton University, Princeton, U.S.A. (2008).
  10. [10] Smythe, W., Static and Dynamic Electricity, II ed., New York, U.S.A. (1950).
  11. [11] Everett, J. and Osemeikhian, J., “Spherical Coils for Uniform Magnetic Fields,” Rev. Sci. Instrum., Vol. 43, pp. 470474 (1966). doi: 10.1088/0950-7671/43/7/ 311
  12. [12] Gottardi, G., Mesirca, P. and Agostini, C., “AFour Coil Exposure System (Tetracoil) Producing a Highly Uniform Magnetic Field,” Bioelectromagnetics, Vol. 24, pp. 125133 (2003). doi: 10.1002/bem.10074
  13. [13] Robinson, P., “Improvements to the System of Four Equiradial Coils for Producing a Uniform Magnetic Field,” J. Phys. E: Sci. Instrum., Vol. 16, pp. 3942 (1983). doi: 10.1088/0022-3735/16/1/008
  14. [14] Primdahl, F. and Jensen, P, “Compact Spherical Coil for Fluxgate Magnetometer Vector Feedback,” J. Phys. E: Sci. Instrum., Vol. 15, pp. 221226 (1982). doi: 10.1088/0022-3735/15/2/015
  15. [15] Dong, H., Lin, H. and Tang, X., “Atomic-SignalBased Zero-Field Finding Technique for Unshielded Atomic Vector Magnetometer,” IEEE. Sens. J., Vol. 13, pp. 186189 (2013). doi: 10.1109/JSEN.2012. 2216951