Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

J. Yu This email address is being protected from spambots. You need JavaScript enabled to view it.1,2,3, Y. Liu1,2,3, F. X. Cai1,2,3, M. Shafiei1,2,3, G. Chen1,2,3, N. Motta1,2,3, W. Wlodarski1,2,3, K. Kalantar-zadeh1,2,3 and P. T. Lai1,2,3

1Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR
2School of Chemistry, Physics and Mechanical Engineering, Institute of Future Environments, Queensland University of Technology, Australia
3School of Electrical and Computer Engineering, RMIT University, Australia


 

Received: May 24, 2014
Accepted: February 22, 2014
Publication Date: March 1, 2014

Download Citation: ||https://doi.org/10.6180/jase.2014.17.1.05  


ABSTRACT


There has been significant interest in developing metal oxide films with high surface area-to-volume ratio nanostructures particularly in substantially increasing the performance of Pt/oxide/semiconductor Schottky-diode gas sensors. While retaining the surface morphology of these devices, they can be further improved by modifying their nanostructured surface with a thin metal oxide layer. In this work, we analyse and compare the electrical and hydrogen-sensing properties of MoO3 nanoplatelets coated with a 4 nm layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We explain in our study, that the presence of numerous defect traps at the surface (and the bulk) of the thin high- layer causes a substantial trapping of charge during hydrogen adsorption. As a result, the interface between the Pt electrode and the thin oxide layer becomes highly polarised. Measurement results also show that the nanoplatelets coated with Ta2O5 can enable the device to be more sensitive (a larger voltage shift under hydrogen exposure) than those coated with La2O3.


Keywords: Hydrogen, Gas Sensor, Metal Oxide, Heterostructure


REFERENCES


  1. [1] Yu, J., Ippolito, S. J., Shafiei, M., Dhawan, D., Wlodarski, W. and Kalantar-zadeh, K., “Reverse Biased Pt/Nanostructured MoO3/SiC Schottky Diode Based Hydrogen Gas Sensors,” Applied Physics Letters, Vol. 94, No. 1, p. 013504 (2009). doi: 10.1063/ 1.3054164
  2. [2] Hubert, T., Boon-Brett, L., Black, G. and Banach, U., “Hydrogen Sensors  A Review,” Sensors and Actuators B-Chemical, Vol. 157, No. 2, pp. 329352 (2011). doi: 10.1016/j.snb.2011.04.070
  3. [3] Korotcenkov, G., “Metal Oxides for Solid-State Gas Sensors: What Determines our Choice?” Mat Sci Eng B-Solid, Vol. 139, No. 1, pp. 123 (2007). doi: 10.1016/j.mseb.2007.01.044
  4. [4] Robertson, J., “High Dielectric Constant Oxides,” European Physical Journal-Applied Physics, Vol. 28, No. 3, pp. 265291 (2004). doi: 10.1051/epjap:2004206
  5. [5] Robertson, J. and Peacock, P. W., “Bonding and Structure of Some High-k Oxide: Si Interfaces,” Physica Status Solidi B-Basic Research, Vol. 241, No. 10, pp. 22362245 (2004). doi: 10.1002/pssb.200404939
  6. [6] Schalwig, J., Muller, G., Eickhoff, M., Ambacher, O. and Stutzmann, M., “Gas Sensitive GaN/AlGaN-Heterostructures,” Sensors and Actuators B-Chemical, Vol. 87, No. 3, pp. 425430 (2002). doi: 10.1016/ S0925-4005(02)00292-7
  7. [7] Shafiei, M., Yu, J., Chen, G., Lai, P. T., Motta, N., Wlodarski, W. and Kalantar-zadeh, K., “Improving the Hydrogen Gas Sensing Performance of Pt/MoO3 Nanoplatelets Using a Nano Thick Layer of La2O3,” Sensors and Actuators B: Chemical, Vol. 187, pp. 267 273 (2013). doi: 10.1016/j.snb.2012.11.019
  8. [8] Yu, J., Shafiei, M., Wlodarski, W., Li, Y. X. and Kalantar-zadeh, K., “Enhancement of Electric Field Properties of Pt/Nanoplatelet MoO3/SiC Schottky Diode,” Journal of Physics D-Applied Physics, Vol. 43, No. 2, p. 025103 (2010). doi: 10.1088/0022-3727/ 43/2/025103
  9. [9] Chen, G., Yu, J. and Lai, P. T., “A Study on MIS Schottky Diode Based Hydrogen Sensor Using La2O3 as Gate Insulator,” Microelectronics Reliability, Vol. 52, No. 8, pp. 16601664 (2012). doi: 10.1016/j. microrel.2012.03.022
  10. [10] Yu, J., Chen, G., Li, C. X., Shafiei, M., Ou, J. Z., Plessis, J. D., Kalantar-zadeh, K., Lai, P. T. and Wlodarski, W., “Hydrogen Gas Sensing Properties of Pt/Ta2O5 Schottky Diodes Based on Si and SiC Substrates,” Sensors and Actuators, A: Physical, Vol. 172, No. 1, pp. 914 (2011). doi: 10.1016/j.sna.2011.02. 021
  11. [11] Chen, X. F., Zhu, W. G. and Tan, O. K., “Microstructure, Dielectric Properties and Hydrogen Gas Sensitivity of Sputtered Amorphous Ba0.67Sr0.33TiO3 Thin Films,” Mat Sci Eng B-Solid, Vol. 77, No. 2, pp. 177184 (2000). doi: 10.1016/S0921-5107(00)00484-0
  12. [12] Yan, J. T. and Lee, C. T., “Improved Detection Sensitivity of Pt/ -Ga2O3/GaN Hydrogen Sensor Diode,” Sensors and Actuators B: Chemical, Vol. 143, No. 1, pp. 192197 (2009). doi: 10.1016/j.snb.2009.08.040
  13. [13] Sze, S. M. and Ng, K. K., Physics of Semiconductor Devices, Wiley (2006). doi: 10.1002/0470068329
  14. [14] Yu, J., Ippolito, S. J., Shafiei, M., Dhawan, D., Wlodarski, W. and Kalantar-zadeh, K., “Reverse Biased Pt/Nanostructured MoO3/SiC Schottky Diode Based Hydrogen Gas Sensors,” Appl Phys Lett, Vol. 94, No. 1, p. 013504 (2009). doi: 10.1063/1.3054164
  15. [15] Harrell, W. R. and Frey, J., “Observation of Poole  Frenkel Effect Saturation in SiO2 and Other Insulating Films,” Thin Solid Films, Vol. 352, No. 12, pp. 195204 (1999). doi: 10.1016/S0040-6090(99)00344-2
  16. [16] Ganguly, S., Konar, A., Hu, Z., Xing, H. and Jena, D., “Polarization Effects on Gate Leakage in InAlN/AlN/ GaN High-Electron-Mobility Transistors,” Appl Phys Lett, Vol. 101, No. 25, p. 253519 (2012). doi: 10.1063/1.4773244
  17. [17] Yu, J., Hao, W., Shafiei, M., Field, M. R., Liu, Z. F., Wlodarski, W., Motta, N., Li, Y. X., Kalantar-zadeh, K. and Lai, P. T., “A Hydrogen/Methane Sensor Based on Niobium Tungsten Oxide Nanorods Synthesised by Hydrothermal Method,” Sensors and Actuators B: Chemical, Vol. 184, pp. 118129. doi: 10.1016/j.snb. 2013.03.135


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.