Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Hatem Al-Dois This email address is being protected from spambots. You need JavaScript enabled to view it.1, A. K. Jha1 and R. B. Mishra2

1Department of Mechanical Engineering Indian Inst. of Tech., Banaras Hindu University, Varanasi, U. P., India
2Department of Computer Engineering Indian Inst. of Tech., Banaras Hindu University, Varanasi, U. P., India


 

Received: January 11, 2012
Accepted: September 5, 2012
Publication Date: June 1, 2013

Download Citation: ||https://doi.org/10.6180/jase.2013.16.2.09  


ABSTRACT


This paper describes an approach to develop the kinematic and dynamic models of IRB 6640-180-255, an industrial manipulator from ABB. Models’ parameters and constraints that characterize robot motion are extracted from manuals and tests on the same robot in ABB RobotStudio® environment. RobotStudio® is a software provided by the robot manufacturer and implements a virtual controller identical to the one impeded in the real robots. After building the robot models, the performance of the same robot installed in ElectroSteel Castings Ltd, Kolkata is simulated for a task of producing sand cores in a robotic workcell. The trajectory used for simulation is similar to the one used in the real robot motion. To insure that the robot movement is simulated without violating motion constraints given in the motion command, a task-time optimization is proposed where motion constraints are set to limits of joint positions, velocities, accelerations and torques. Finally, the overall task time is optimized by running the robot in maximum velocity and the optimized time is compared to the original task time. Modeling, simulation and task-time optimization are developed in MATLAB®.


Keywords: Modeling, Simulation, Task-Time Optimization, IRB 6640 Manipulator


REFERENCES


  1. [1] Angeles, J., Fundamentals of Robotic Mechanical Systems, Theory, Methods, and Algorithms. 3 ed, Berlin Heidelberg: Springer-Verlag Inc (2007).
  2. [2] Kahn, M. E. and Roth, B., “The Near-Minimum-Time Control of Open-Loop Articulated Kinematic Chains,” Journal of Dynamic Systems, Measurement, and Control, Vol. 93, No. 3, pp. 164 172 (1971). doi: 10.1115/ 1.3426492
  3. [3] Bobrow, J. E., Dubowsky, S. and Gibson, J. S., “TimeOptimal Control of Robotic Manipulators along Specified Paths,” International Journal of Robotics Research, Vol. 4, No. 3, pp. 3 17 (1985). doi: 10.1177/ 027836498500400301
  4. [4] Shin, K. and McKay, N., “Minimum-Time Control of Robotic Manipulators with Geometric Path Constraints,” IEEE Transactions on Automatic Control, Vol. 30, No. 6, pp. 531 541 (1985). doi: 10.1109/TAC.1985.1104009
  5. [5] Pfeiffer, F. and Johanni, R., A Concept for Manipulator Trajectory Planning, Proceedings 1986 IEEE International Conference on Robotics and Automation, Vol. 3, pp. 1399 1405 (1986). doi: 10.1109/ROBOT.1986. 1087500
  6. [6] Shiller, Z., “On Singular Time-Optimal Control along Specified Paths,” IEEE Transactions on Robotics and Automation, Vol. 10, No. 4, pp. 561 566 (1994). doi: 10.1109/70.313107
  7. [7] Shiller, Z. and Dubowsky, S., “On Computing the Global Time-Optimal Motions of Robotic Manipulators in the Presence of Obstacles,” IEEE Transactions on Robotics and Automation, Vol. 7, No. 6, pp. 785 797 (1991). doi: 10.1109/70.105387
  8. [8] Chen, Y. and Desrochers, A. A., Structure of Minimum-Time Control Law for Robotic Manipulators with Constrained Paths, Proceedings 1989 International Conference on Robotics and Automation, pp. 971 976 (1989). doi: 10.1109/ROBOT.1989.100107
  9. [9] Sontag, E., and Sussmann, H., Remarks on the TimeOptimal Control of Two-Link Manipulators, 1985 24th IEEE Conference on Decision and Control, pp. 1646 1652 (1985). doi: 10.1109/CDC.1985.268795
  10. [10] Sontag, E. and Sussmann, H., Time-Optimal Control of Manipulators, Proceedings 1986 IEEE International Conference on Robotics and Automation, Vol. 3, pp. 1692 1697 (1986). doi: 10.1109/ROBOT.1986.1087463
  11. [11] Fourquet, J. Y., Optimal Control Theory and Complexity of the Time-Optimal Problem for Rigid Manipulators, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems ‘93, IROS ‘93, Vol. 1, pp. 84 90 (1993). doi: 10.1109/ IROS.1993.583084
  12. [12] Siciliano, B., Scilavicco, L., Villani, L. and Oriolo, G., Robotics Modeling, Planning and Conrol, London: Springer-Verlage Inc (2009).
  13. [13] Haddad, M., Chettibi, T., Khalil, W. and Lehtihet, H., Trajectory Generation, in Robot Manipulators, Modeling, Performance, Analysis, and Control, W. Khalil and E. Dombre, Editors. ISTE Ltd.: London (2007).
  14. [14] lajpah, L., Robot Simulation for Control Design, in Robot Manipulators, Trends and Development, A. Jiménez and B. M. Al-Hadithi, Editors. In-Teh: Vukovar, Croatia, pp. 43 70 (2010).
  15. [15] lajpah, L., Planar Manipulators Toolbox: User’s Guide, Joef Stefan Institute: Ljubljana, Slovenija (1997).
  16. [16] Hollars, M. G., Rosenthal, D. E. and Sherman, M. A., Sd/Fast User’s Manual, Version B.2, CA, USA (1994).
  17. [17] Corke, P. I., “A Robotics Toolbox for Matlab,” IEEE Magazine of Robotics & Automation, Vol. 3, No. 1, pp. 24 32 (1996). doi: 10.1109/100.486658
  18. [18] Simmechanics, User’s Guide, MA, USA (2008).
  19. [19] Kleijn, I. C., Getting Started with 20-Sim 4.1, Enschede, The Netherlands (2009).
  20. [20] Operating Manual, Robotstudio 5.10, Västerås, Sweden (2007).
  21. [21] Irb 6640, a Stronger Robot-the Next Generation, Västerås, Sweden (2009).
  22. [22] Product Manual, Irb 6640, Västerås Sweden (2007).
  23. [23] Denavit, J. and Hartenberg, R. S., “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,” Transactions of the ASME Journal of Applied Mechanics, Vol. 22, pp. 215 221 (1955).
  24. [24] Craig, J. J.,Introduction to Robotics: Mechanics and Control, 3 ed, Delhi, India: Pearson Education, Inc (2007).
  25. [25] Lee, C. S. G., “Robot Arm Kinematics, Dynamics, and Control,” Computer, Vol. 15, No. 12, pp. 62 80 (1982). doi: 10.1109/MC.1982.1653917
  26. [26] Yan-Shen, W., Lian-Zheng, G., Ping-Chun, X. and Yu-Xian, G., Dynamic Simulation and Gravity Balancing Optimization of Spot Welding Robot Based on Recurdyn, 2011 International Conference on Mechatronics and Automation (ICMA), pp. 1905 1910. Beijing, China: IEEE (2011). doi: 10.1109/ICMA. 2011.5986271
  27. [27] Vukobratovic, M., “Beginnings of Robotics as a Separate Discipline of Technical Sciences and Some Fundamental Results - a Personal View,” Robotica, Vol. 20, No. 2, pp. 223 235 (2002). doi: 10.1017/S026 3574701003903
  28. [28] Hollerbach, J. M., Dynamic Scaling of Manipulator Trajectories, in American Control Conference, ACC 1983 (1983).
  29. [29] Swevers, J., Verdonck, W. and De Schutter, J., “Dynamic Model Identification for Industrial Robots,” IEEE Control Systems Magazine, Vol. 27, No. 5, pp. 58 71 (2007). doi: 10.1109/MCS.2007.904659
  30. [30] Armstrong, B., Khatib, O. and Burdick, J., The Explicit Dynamic Model and Inertial Parameters of the Puma 560 Arm, Proceedings 1986 IEEE International Conference on Robotics and Automation, pp. 510 518 (1986). doi: 10.1109/ROBOT.1986.1087644