REFERENCES
- [1] Sane, S. P., “The Aerodynamics of Insect Flight,” The Journal of Experimental Biology, Vol. 206, pp. 4191 4208 (2003).
- [2] Dickinson, M. H., Lehmann, F. O. and Sane, S. P., “Wing Rotation and the Aerodynamic Basis of Insect Flight,” Science, Vol. 284, pp. 19541960 (1999).
- [3] Srygley, R. B. and Thomas, A. L. R., “Unconventional Lift-Generating Mechanisms in Free-Flying Butterflies,” Nature, Vol. 420, pp. 660664 (2002).
- [4] Sun, Y. and Nelson, B. J., “MEMS Capacitive Force Sensors for Cellular and Flight Biomechanics,” Biomedical Materials, Vol. 2, pp. s16s22 (2007).
- [5] Takahashi, H., Matsumoto, K. and Shimoyama, I., “Measurement of Differential Pressure on a Butterfly Wing,” Proceedings of the 23rd IEEE International Conference on MEMS, Hong Kong, pp. 6366 (2010).
- [6] Hedenström, A., Johansson, L. C., Wolf, M., von Busse, R., Winter, Y. and Spedding, G. R., “Bat Flight Generates Complex Aerodynamic Tracks,” Science, Vol. 316, pp. 894897 (2007).
- [7] Zhang, G., Sun, J., Chen, D. and Wang Y., “Flapping Motion Measurement of Honeybee Bilateral Wings Using Four Virtual Structured-Light Sensors,” Sensors and Actuators A: Physical, Vol. 148, pp. 1927 (2008).
- [8] Tsang, W., Stone, A., Aldworth, Z., Otten, D., Akinwande, A., Daniel, T., Hildebrand, J., Levine, R. and Voldman, J., “Remote Control of a Cyborg Moth Using CNT-Enhanced Flexible Neuroprosthetic Probe,” Proceedings of the 23rd IEEE International Conference on MEMS, Hong Kong, pp. 3942 (2010).
- [9] Sato, H., Berry, C. W., Peeri, Y., Baghoomian, E., Casey, B. E., Lavella, G., VandenBrooks, J. M., Harrison, J. F. and Maharbiz, M. M., “Remote Radio Control of Insect Flight,” Frontiers in Integrative Neuroscience, Vol. 3, p. 24 (2009).
- [10] Pornsinsirirak, T. N., Tai, Y. C., Nassef, H. and Ho, C. M., “Titanium-Alloy MEMS Wing Technology for a Micro Aerial Vehicle Application,” Sensors and Actuators A: Physical, Vol. 89, pp. 95103 (2001).
- [11] Barrett, R., McMurtry, R., Vos, R., Tiso, P., De Breuker, R., Barrett, R., McMurtry, R., Vos, R., Tiso, P. and De Breuker, R., “Post-Buckled Precompressed (PBP) Elements: A New Class of Flight Control Actuators Enhancing High-Speed Autonomous VTOL MAVs,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 5762, pp. 111122 (2005).
- [12] Jones, K. D., Bradshaw, C. J., Papadopoulos, J. and Platzer, M. F., “Bio-Inspired Design of Flapping-Wing Micro Aerial Vehicles,” Aeronautical Journal, Vol. 109, pp. 385393 (2005).
- [13] Rozhdestvensky, K. V. and Ryzhov, V. A., “Aerodynamics of Flapping-Wing Propulsors,” Progress in Aerospace Sciences, Vol. 39, pp. 585633 (2003).
- [14] Yang, L. J., Hsu, C. K., Ho, J. Y. and Feng, C. K., “Flapping Wings with PVDF Sensors to Modify the Aerodynamic Forces of a Micro Aerial Vehicle,” Sensors and Actuators A: Physical, Vol. 139, pp. 95103 (2007).
- [15] Yang, L. J., Hsu, C. K., Han, H. C. and Miao, J. M., “A Light Flapping Micro-Aerial-Vehicle Using Electrical Discharge Wire Cutting Technique,” Journal of Aircraft, Vol. 46, pp. 18661874 (2009).
- [16] Information on http://www.avinc.com.
- [17] “The 50 Best Inventions,” Time, Nov. 28, p. 80 (2011).
- [18] Norberg, U. M., Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution, 1st ed., Springer, New York (1990).
- [19] Banala, S. K. and Agrawal, S. K., “Design and Optimization of a Mechanism for Out-of-Plane Insect Winglike Motion with Twist,” Journal of Mechanical Design/Transactions of the ASME, Vol. 127, pp. 841 844 (2005).
- [20] McIntosh, S. H., Agrawal, S. K. and Khan, Z., “Design of a Mechanism for Biaxial Rotation of a Wing for a Hovering Vehicle,” IEEE/ASME Transactions on Mechatronics, Vol. 11, pp. 145153 (2006).
- [21] Zbikowski, R., Galin´ski, C. and Pedersen, C. B., “Four-Bar Linkage Mechanism for Insectlike Flapping Wings in Hover: Concept and an Outline of Its Realization,” Journal of Mechanical Design/Transactions of the ASME, Vol. 127, pp. 817824 (2005).
- [22] Zbikowski, R. and Galin´ski, C., “Insect-Like Flapping Wing Mechanism Based on a Double Spherical Scotch Yoke,” Journal of the Royal Society Interface, Vol. 2, pp. 223235 (2005).
- [23] Information on http://www.festo.com/PDF_Flip/corp/ smartbird_en/index.ftm (Festo’s Smartbird).
- [24] Yang, L. J., Huang, I. C., Chen, Y. S., Tang, W. T. and Wang, A. B., “A Parylene-LED Wingbeating Indicators for Visual Remote Sensing,” Technical Digest of the 16th International Conference on Solid-State Sensors, Actuators, and Microsystems, Beijing, pp. 422 425 (2011).
- [25] Yang, L. J., U.S. Patent 8,033,499B2 (2011).
- [26] Information on http://www.ornithopter.org/ and its on-line store http://www.flyabird.com/index2.html.
- [27] Mueller, T. J., “Aerodynamic Measurements at Low Reynolds Numbers for Fixed Wing Micro-Air Vehicles,” RTO AVT/VKI Special Course on Development and Operation of UAVs forMilitary and Civil Applications, VKI, Belgium, p. 1 (1999).
- [28] Rae, Jr., W. H. and Pope, A., Low-Speed Wind Tunnel Testing, 2nd ed., John Wiley & Sons Inc., New Jersey, p. 371 (1984).
- [29] Lin, C. S., Hwu, C. and Young, W. B., “The Thrust and Lift of an Ornithopter’s Membrane Wings with Simple Flapping Motion,” Aerospace Science and Technology, Vol. 10, pp. 111119 (2006).
- [30] Yang, L. J., Kuo, A. F. and Hsu, C. K., “Wing Stiffness on Light Flapping Micro Aerial Vehicles,” Journal of Aircraft, Vol. 49, pp. 423431 (2012).
- [31] Knoller, R., “Die Gesetze Des Luftwiderstands,” Flug-und Motortechnik (Wien), Vol. 3, pp. 17 (1909).
- [32] Betz, A., “Ein Beitrag Zur Erklärung Des Segelfluges,” Zeitschrift für Flugtechnik und Motorluftschiffahrt, Vol. 3, pp. 269272 (1912).
- [33] Weis-Fogh, T., “Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production,” The Journal of Experimental Biology, Vol. 59, pp. 169230 (1973).
- [34] Pornsinsirirak, T. N., Parylene MEMS Technology for Adaptive Flow Control of Flapping Flight, Ph.D. Dissertation, Electrical Engineering, California Inst. of Technology, Pasadena (2002).
- [35] Yang, L. J., Kao, C. Y. and Huang, C. K, “Development of Flapping Ornithopters by Precision Injection Molding,” Applied Mechanics and Materials, Vol. 163, pp. 125132 (2012).
- [36] Kubo, Y., Shimoyama, I. and Miura, H., “Study of Insect-Based Flying Microrobots,” Proceedings of the IEEE Int. Conf. on Robotics and Automation, Vol. 2, pp. 386391, Atlanta, USA (1993).
- [37] Vandenburghe, N., Zhang, J. and Childress, S., “Symmetry Breaking Leads to Forward Flapping Flight,” Journal of Fluid Mechanics, Vol. 506, pp. 147155 (2004).
- [38] Alben, S. and Shelley, M., “Coherent Locomotion as an Attracting State for a Free Flapping Body,” Proceedings of National Academic Society of USA, Vol. 102, pp. 1116311166 (2005).
- [39] Shyy, W., Berg, M. and Ljungqvist, D., “Flapping and Flexible Wings for Biological and Micro Air Vehicles,” Progress in Aerospace Sciences, Vol. 35, pp. 455505 (1999).
- [40] Ho, S., Nassef H., Pornsinsirirak, N., Tai, Y.-C. and Ho, C.-M., “Unsteady Aerodynamics and Flow Control for Flapping Wing Flyers,” Progress in Aerospace Sciences, Vol. 39, pp. 635681 (2003).
- [41] Greenewalt, C. H., “The Flight of Birds,” Trans. Am. Philos. Soc., Vol. 65, pp. 167 (1975).
- [42] Pennycuick, C. J., Mechanical Constraints on the Evolution of Flight, Vol. 8, pp. 8398, In Padian K. (ed.) The Origin of Birds and the Evolution of Flight, Calif. Acad. Sci., San Francisco (1986).
- [43] Pennycuick, C. J., Mechanics of Flight, Vol. 5, pp. 175, In Farner, D. S. and King, J. R. (eds.) Avian Biology, Academic Press, London New York (1975).
- [44] Willmott, A. P. and Ellington, C. P., “Measuring the Angle of Attack of Beating Insect Wings: Robust Three-Dimensional Reconstruction from Two-Dimensional Images,” The Journal of Experimental Biology, Vol. 200, pp. 26932704 (1997).
- [45] Tang, W. T., Zhang, W., Huang, C., Young, M. and Hwang, I., “Postural Tremor and Control of the Upper Limb in Air Pistol Shooters,” Journal of Sports Science, Vol. 26, pp. 15791587 (2008).
- [46] Nguyen, T. T. and Byun, D., “Two-Dimensional Aerodynamic Models of Insect Flight for Robotic Flapping Wing Mechanisms of Maximum Efficiency,” Journal of Bionic Engineering, Vol. 5, pp. 111 (2008).
- [47] Ansari, S. A., Zbikowski, R. and Knowles, K., “Aerodynamic Modelling of Insect-Like Flapping Flight for Micro Air Vehicles,” Progress in Aerospace Sciences, Vol. 42, pp. 129172 (2006).
- [48] Heathcote, S. and Gursul, I., “Flexible Flapping Airfoil Propulsion at Low Reynolds Numbers,” AIAA Journal, Vol. 45, pp. 10661079 (2007).
- [49] Zhao, L., Huang, Q., Deng, X. and Sane, S. P., “Aerodynamic Effects of Flexibility in Flapping Wings,” Journal of Royal Society Interface, Vol. 7, pp. 485 497 (2010).
- [50] Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C. K., Cesnik, C. E. S. and Liu, H., “Recent Progress in Flapping Wing Aerodynamics and Aeroelasticity,” Progress in Aerospace Sciences, Vol. 46, pp. 284327 (2010).
- [51] Aono, H., Chimakurthi, S. K., Wu, P., Sallstrom, E., Stanford, B. K., Cesnik, C. E. S., Ifju, P., Ukeiley, L. and Shyy, W., “A Computational and Experimental Study of Flexible Flapping Wing Aerodynamics,” Proceeding of the 48th AIAA Aerospace Science Meeting, Orlando, Florida, paper no. AIAA 2010-554 (2010).
- [52] Wang, Z. J., “Two Dimensional Mechanism for Insect Hovering,” Physical Review Letter, Vol. 85, pp. 2216 2219 (2000).
- [53] Sun, M. and Tang, J., “Unsteady Aerodynamic Force Generated by a Model Fruit Fly Wing in Flapping Motion,” The Journal of Experimental Biology, Vol. 205, pp. 5570 (2002).
- [54] Miao, J. M. and Ho, M.-H., “Effect of Flexure on Aerodynamic Propulsive Efficiency of Flapping Flexible Airfoil,” Journal of Fluids and Structures, Vol. 22, pp. 401419 (2006).
- [55] Miao, J.-M., Sun, W.-H. and Tai, C.-H., “Numerical Analysis on Aerodynamic Force Generation of Biplane Counter-Flapping Flexible Airfoils,” Journal of Aircraft, Vol. 46, pp. 17851794 (2009).
- [56] Lua, K. B., Lim, T. T. and Yeo, K. S., “Effect of Wing-Wake Interaction on Aerodynamic Force Generation on a 2D Flapping Wing,” Experiments in Fluids, Vol. 51, pp. 177195 (2011).
- [57] Suryadi, A. and Obi, S., “The Estimation of Pressure on the Surface of a Flapping Rigid Plate by Stereo PIV,” Experiments in Fluids, Vol. 51, pp. 14031416 (2011).