Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Hazem Ali Attia This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Mathematics, College of Science, Al-Qasseem University, P.O. Box 237, Buraidah 81999, KSA


 

Received: July 20, 2005
Accepted: September 30, 2005
Publication Date: December 1, 2006

Download Citation: ||https://doi.org/10.6180/jase.2006.9.4.01  


ABSTRACT


The heat transfer in a steady laminar stagnation point flow of an incompressible non-Newtonian micropolar fluid impinging on a permeable stretching surface with heat generation or absorption is investigated. Numerical solution for the governing nonlinear momentum equations and the inhomogeneous energy equations is obtained. The effect of the characteristics of the non-Newtonian fluid, the surface stretching velocity, the heat generation/absorption coefficient, and Prandtl number on both the flow and heat transfer is presented and discussed.


Keywords: Stagnation Point Flow, Stretching Sheet, Heat Transfer, Non-Newtonian Fluid, Numerical Solution


REFERENCES


  1. [1] Hiemenz, K., “Die Grenzschicht an Einem in den Gleichformingen Flussigkeitsstrom Eingetauchten Geraden Kreiszylinder,” Dingler Polytech. J., Vol. 326, pp. 321410 (1911).
  2. [2] Homann, F., “Der Einfluss Grosser Zahighkeit bei der Stromung um den Zylinder und um die Kugel,” Z. Angew. Math. Mech., Vol. 16, pp. 153164 (1936).
  3. [3] Schlichting, H. and Bussmann, K., ”Exakte Losungen fur die Laminare Grenzchicht mit Absaugung und Ausblasen,” Schri. Dtsch. Akad. Luftfahrtforschung, Ser. B, Vol. 7, pp. 2569 (1947).
  4. [4] Preston, J. H., “The Boundary Layer Flow over a Permeable Surface through which Suction is Applied,” Reports and Memoirs. British Aerospace Research Council, London, No. 2244 (1946).
  5. [5] Ariel, P. D., “Stagnation Point Flow with Suction: an Approximate Solution,” J. Appl. Mech., Vol. 61, pp. 976978 (1994).
  6. [6] Weidman, P. D. and Mahalingam, S., “Ayisymmetric Stagnation-point Flow Impinging on a Transversely Oscillating Plate with Suction,” J. Engg. Math., Vol. 31, p. 305 (1997).
  7. [7] Na, T. Y., Computational Methods in Engineering Boundary Value Problem, Academic Press, New York, U.S.A. (1979).
  8. [8] Ariel, P. D., “Hiemenz Flow in Hydromagnetics,” Acta Mech., Vol. 103, pp. 3143 (1994).
  9. [9] Attia, H. A., “Hydromagnetic Stagnation Point Flow with Heat Transfer over a Permeable Surface,” Arab. J. Sci. Engg., Vol. 28, pp. 107112 (2003).
  10. [10] Attia, H. A., “Homann Magnetic Flow and Heat Transfer with Uniform Suction or Injection,” Can. J. Phys., Vol. 81, pp. 12231230 (2003).
  11. [11] Massoudi, M. and Ramezan, M., “Boundary Layers Heat Transfer Analysis of a Viscoelastic Fluid at a Stagnation Point,” ASME HTD, Vol. 130, pp. 8186 (1990).
  12. [12] Massoudi, M. and Ramezan, M., “Heat Transfer Analysis of a Viscoelastic Fluid at a Stagnation Point,” Mech. Res. Commun., Vol. 19, pp. 129134 (1992).
  13. [13] Garg, V. K., “Heat Transfer due to Stagnation Point Flow of a Non-Newtonian Fluid,” Acta Mech., Vol. 104, pp. 159171 (1994).
  14. [14] Crane, L. J., “Flow Past a Stretching Plate,” ZAMP, Vol. 21, pp. 645647 (1970).
  15. [15] Carragher, P. and Crane, L. J., “Heat Transfer on a Continuous Stretching Sheet,” ZAMM, Vol. 62, p. 564 (1982).
  16. [16] Dutta, B. K., Roy, P. and Gupta, A. S., “Temperature Field in Flow over a Stretching Sheet with Uniform Heat Flux,” Int. Comm. Heat Mass Transfer, Vol. 12, p. 89 (1985).
  17. [17] Chiam, T. C., “Stagnation Point Flow towards a Stretching Plate,” J. Phys. Soc. Jpn., Vol. 63, p. 2443 (1994).
  18. [18] Ray Mahapatra, T. and Gupta, A. S., “Heat Transfer in Stagnation-point Flow towards a Stretching Sheet,” Heat Mass Transfer, Vol. 38, pp. 517521 (2002).
  19. [19] Rajagopal, K. R., Na, T. Y. and Gupta, A. S., “Flow of a Visco-elastic Fluid over a Stretching Sheet,” Rheol. Acta, Vol. 23, p. 213 (1984).
  20. [20] Mahapatra, T. R. and Gupta, A. S., “Stagnation Point Flow of a Viscoelastic Fluid towards a Stretching Surface,” Int. J. Non-Linear Mech., Vol. 39, pp. 811820 (2004).
  21. [21] Nazar, R., Amin, N., Filip, D. and Pop, I., “Stagnation Point Flow of a Micropolar Fluid towards a Stretching Sheet,” Int. J. Non-Linear Mech., Vol. 39, pp. 1227 1235 (2004).
  22. [22] White, M. F., Viscous Fluid Flow, McGraw-Hill, New York, U.S.A. (1991).