Chia Ying Lee1 , Tseung Yuen Tseng1 , Seu Yi Li2 and Pang Lin This email address is being protected from spambots. You need JavaScript enabled to view it.2

1Department of Electronics Engineering and Institute of Electronics National Chiao Tung University Hsinchu, Taiwan, 300, R.O.C.
2Institute of Materials Science Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, R.O.C.


Received: March 31, 2003
Accepted: April 30, 2003
Publication Date: June 1, 2003

Download Citation: ||  


Single crystalline zinc oxide (ZnO) nanowires have been grown on Si (100) substrates by a vapor-liquid-solid (VLS) process at temperatures in the range 850-950 °C in an inert atmosphere. The VLS-grown ZnO nanowires have been characterized in detail using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and photoluminescence spectroscopy (PL). The XRD studies revealed that the ZnO nanowires had wurtzite structure (hexagonal) with well-defined growth along [0001] direction. The composition analysis by EDX indicated the presence of small amounts of Si codeposited on the ZnO nanowires. The microscopic studies revealed a tilted configuration for ZnO nanowires on Si (100) with diameters in the range 60 to 100 nm and lengths varying between 1 to 3 µm. A strong ultraviolet emission has been observed for the ZnO nanowires as evidenced by the photoluminescence spectra at a wavelength of 381 nm.

Keywords: Zinc Oxide, Nanowires, Vapor-Liquid-Soild Process, Photoluminescence


  1. [1] Huang, Y., Duan, X., Q Wei and Leiber C. M., “Directed Assembly of One-Dimensional Nanostructures into Functional Networks,” Science, Vol. 291, pp. 630-33 (2001).
  2. [2] Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. and Leiber, C. M., “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,” Nature, Vol. 415, pp. 617 (2002).
  3. [3] Cui, Y. and Leiber, C. M., “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science, Vol. 291, pp. 851-53 (2001).
  4. [4] Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56 (1991).
  5. [5] Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. and Lieber, C. M., “Diameter -Controlled Synthesis of Single-Crystal Silicon Nanowires,” Appl. Phys. Lett., Vol. 78, pp. 2214-16 (2001).
  6. [6] Burghard, Gu, G., M., Kim, G. T., Dusberg, G. S., Chiu, P. W., Krstic, V., Roth, S. and Han, W. Q., “Growth and Electrical Transport of Germanium Nanowires,” J. Appl. Phys., Vol. 90, pp. 5747-51(2001).
  7. [7] Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C. M., “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature, Vol. 409, pp. 66 (2001).
  8. [8] Bai, Z. G., Yu, D. P., Zhang, H. Z., Ding, Y., Gai, S. Q., Hang, X. Z., Hiong, Q. L. and Feng, G. C., “Nano-Scale GeO2 Wires Synthesized by Physical Evaporation,” Chem. Phys. Lett., Vol. 303, pp. 311-14 (1999).
  9. [9] Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E. and Yang, P., “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater., Vol. 13, pp. 113-16 (2001).
  10. [10] Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P., “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, Vol. 292, pp. 1897-99 (2001).
  11. [11] Shi, G., Mo, C. M., Cai, W. L. and Zhang, L. D., “Photoluminescence of ZnO Nanoparticles in Alumina Membrane with Ordered Pore Arrays,” Solid State Commun. Vol. 115, pp. 253-56 (2000).
  12. [12] Wagner, R. S. and Ellis, W. C., “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett., Vol. 4, pp. 89 (1964).
  13. [13] Wong, E. M. and Searson, P. C., “ZnO Quantum Particle Thin Films Fabricated by Electrophoretic Deposition,” Appl. Phys. Lett., Vol. 74, pp. 2939-41 (1999).
  14. [14] Tang, Z. K., Wong, G. K. L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H. and Segawa, Y., “Room-Temperature Ultraviolet Laser Emission from Self-Assembled ZnO Microcrystallite Thin Films,” Appl. Phys. Lett., Vol. 72, pp. 3270-72 (1998).
  15. [15] Li, J. F., Yao, L. Z., Mo, C. M., Cai, W. L., Zhang, Y. and Zhang, L. D., “Photoluminescence Enhancement of ZnO Nanocrystallites with BN Capsules,” J. Cryst. Growth., Vol. 223, pp. 535-38 (2001).
  16. [16] Vanheuseden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A. and Gnade, B. E., “Mechanisms Behind Green Photoluminescence in ZnO Phosphor Powders,” J. Appl. Phys., Vol. 79, pp. 7983-90 (1996).
  17. [17] Baker, H., Okamoto, H., Henry, S. D., Davidson, G. M., Fleming, M. A., Kacprzak, L. and Lampman, H. F., “ASM Handbook,” Vol. 3, pp. 276 (1987).
  18. [18] Wang, Y. P., Lee, W. I. and Tseng, T. Y., “Degradation Phenomena of Multilayer ZnO–Glass Varistors Studied by Deep Level Transient Spectroscopy,” Appl. Phys. Lett., Vol. 69, pp. 1807-09 (1996).
  19. [19] Lee, Y. S. and Tseng, T. Y., “Correlation of Grain Boundary Characteristics with Electrical Properties In ZnO - Glass Varistors,” J. Mater. Sci. Mater. In Electronics, Vol. 9, pp. 65-76 (1998).