Hong-Wen Wang This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Chemistry, Chung-Yuan Christian University, Chung-Li, 320, Taiwan, R.O.C.


Received: April 19, 2002
Accepted: May 24, 2002
Publication Date: June 1, 2002

Download Citation: ||https://doi.org/10.6180/jase.2002.5.2.07  


Reactive powders of stoichiometry Nd2(Ti2/3Al1/3)3O9-δ and thin films of (Ba0.7Sr0.3)TiO3 have been prepared by the conventional mixed-oxide method and the metal-organic deposition method, respectively. The corresponded phases after calcination and sintering are investigated by XRD diffraction. Single phase of Nd2(Ti2/3Al1/3)3O9-δ could be only obtained by sintering over 1400o C for 4 h. (Ba0.7Sr0.3)TiO3 thin film well crystallizes at as low as 570o C after Au-doping by MOD method. Nd2(Ti2/3Al1/3)3O9-δ posses excellent temperature stability of frequency. Substitution of Nd by Ca, Sr, or Pb can also readily form the single phase (Nd,X)2Ti3O9-δ, but inferior microwave properties are observed. The leakage current of BST thin films are found to be reduced by doping Au or codoping Mg/La or Mg/Nb. Mg/La and Mg/Nb reduces leakage current even more when annealing is performed at high temperatures.

Keywords: Nd2(Ti2/3Al1/3)3O9-δ, (Ba0.7Sr0.3)TiO3, Microwave Dielectric Ceramic, Thin Film


  1. [1] O’Byran, H. M.; Thomson, J; Plorud, J. K. J. Am. Ceram. Soc. 1974, 57, 450.
  2. [2] Plourde, J. K.; Linn, D. F.; O’Bryan, H. M.; Thomson, J. J. Amer. Ceram. Soc. 1975, 58, 418.
  3. [3] Wakino, K.; Minai, T.; Tamura, H. J. Am. Ceram. Soc. 1984, 67, 278.
  4. [4] Tamura, H.; Konoike, T.; Sakabe, Y.; Wakino, K. J. Am. Ceram. Soc., 1984, 67, C59.
  5. [5] Wakino, K.; Nishikawa, T.; Ishikawa, Y.; Tamura, H. Br. Ceram. Trans. 1990, 89, 39.
  6. [6] Majumder, S. B.; Jain, M.; Martinez, A.; Katiyar, R. S.; Van Keuls, F. W.; Miranda, F. A. J. Appl. Phys. 2001, 90, 896.
  7. [7] Ayguavives, F.; Jin, Z.; Tombak, A.; Maria, J. P.; Mortazawi, A.; Kingon, A. I.; Stauf, G. T.; Ragaglia, C.; Roeder, J. F.; Brand, M. Integrated Ferroelectrics 2001, 39, 1343.
  8. [8] Cole, M. W.; Joshi, P. C.; Ervin, M. H.; Wood, M. C.; Pfeffer, R. L. Thin Solid Films 2000, 374, 34.
  9. [9] Takahashi, J.; Kageyama, K.; Kodaira, K. Jpn. J. Appl. Phys. 1993, 32, 4327.
  10. [10] Leonov, A. I.; Piryutko, M. M.; Keler, E. K. Izv. Akad. Nauk SSSR, Ser Khim, 1966, 5, 787.
  11. [11] Richard, M.; Brohan, L.; Tournoux, M. J. Solid State Chem. 1994, 112, 345.
  12. [12] Dulieu, B.; Bullot, J.; Wery, J.; Richard, M.; Brohan, L. Phys. Rev. B 1996, 53, 10641.
  13. [13] Muller-Buschbaum, H.; Scheunemann, K. J. Inorg. Nucl. Chem. 1973, 35, 1091.
  14. [14] Kimura, M.; Nanamatsu, S.; Kawamura, T.; Matsushita, S. Jpn. J. Appl. Phys. 1974, 13, 1473.
  15. [15] Kobayashi, Y.; Katoh, M. IEEE Trans. MTT 1985, MTT-33, 586.
  16. [16] Chen, S. Y.; Wang, H. W.; Huang, L. C. Jpn. J. Appl. Phys. 2001, 40, 1.
  17. [17] Masaki, Y.; Koutzarov, I. P.; Ruda, H. E.; Farrel, M. J. Am. Ceram. Soc. 1998, 81, 1074.


27th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.