Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Aminul Islam1 , Chia-Chen Tsou2 , Hui-Ju Hsu2 , Wen-Li Shih2 , Charng-Hsing Liu2 and Chien-Hong Cheng This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Chemistry Tsing Hua University Hsinchu, Taiwan 300, R.O.C.
2Department of Applied Chemistry Chia Nan University of Pharmacy and Science Tainan, Taiwan 717, R.O.C.


 

Received: April 1, 2002
Accepted: May 3, 2002
Publication Date: June 1, 2002

Download Citation: ||https://doi.org/10.6180/jase.2002.5.2.01  


ABSTRACT


We report the synthesis of bis-imidazole derivatives [1,4-bis-(2-(4-benzoylphenyl)-5-R-1H-4-imidazolyl)benzene] BSIB-1 (R = phenyl) and BSIB-2 (R = p-tolyl) by a simple one-step reaction of the corresponding substituted tetraone, substituted benzaldehyde and ammonium acetate and the use of these organic compounds as dopant emitters in electroluminescent devices. The physical properties of BSIBs were thoroughly investigated. A general device structure of the devices is ITO/NPB (20 nm)/CBP (20 nm)/BSIB:TPBI (X%, Y nm)/TPBI (20 nm)/Mg:Ag (10:1; 55 nm)/Ag (100 nm), where NPB, CBP and TPBI stand for 4,4’-bis[N-(1-naphthyl)-N-phenyl-amino]- biphenyl, 4,4’-dicarbazolyl-1.1’-biphenyl and 2,2’,2’’-(1,3,5-phenylene) tris-[1-phenyl-1H-benzimidazole], respectively. Efficient blue-green to blue emission from the devices with luminance ranging from 2500-5000 cd/m2 was obtained. The efficiencies of the devices and the nature of the emitting color depended substantially on the concentration of the dopant and thickness of the emitting layer. The Förster mechanism is suggested to account for the transfer of energy from host TPBI to the dopant and emission from the dopant.


Keywords: Electroluminescent, Imidazole Derivatives, OLED, Blue-Light Emitting Dopants, Blue Light


REFERENCES


  1. [1] (a) Organic Electroluminescent Materials and Devices; Miyata, S.; Nalwa, H. S., Eds.; Gordon and Breach: Amsterdam, 1997. (b) Acc. Chem. Res. 1999, 32, 191, a Special Issue on Molecular Materials in Electronics and Optoelectronic Devices.
  2. [2] Tang C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
  3. [3] (a) Burrough, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539. (b) Era, M.; Adachi, C.; Tsutsui, T.; Saito, T. Chem. Phys. Lett. 1999, 178, 488. (c) Kido, J.; Kimura, M.; Nagai, K. Science 1995, 267, 1332. (d) Shen, Z.; Burrows, P. E.; Bulovic, V.; Forrest, S. R.; Thompson, M. E.; Science 1997, 276, 2009.
  4. [4] (a) Yoshida, M.; Fujii, A.; Ohmori, Y.; Yoshino, K. Jpn. J. Appl. Phys. 1996, 35, L397. (b) Burrows, P. E; Gu, G.; Bulovic, V.; Shen, Z.; Forrest, S. R.; Thompson, M. E. IEEE. Trans. Electron. Devices. 1997, 44, 1188. (c) Adachi, C.; Tokoto, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Lett. Part 2 1988, 27, 269. (d) Tang C. W.; Van Slyke, S. A.; Chen, C. H. Appl. Phys. Lett. 1989, 65, 3610. (e) Hung, L. S.; Tang C. W.; Mason, M. G. A. Appl. Phys. Lett. 1997, 70, 152. (f) Shi, J.; Tang C. W. A. Appl. Phys. Lett. 1997, 70, 1665.
  5. [5] (a) Baldo, M. A.; Obrien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 104. (b) Uchida, M.; Adachi, C.; Koyama, T.; Taniguchi, Y. J. Appl. Phys. 1999, 86, 1680. (c) Ishi, H.; Sugiyama, K.; Ito, E.; Seki, K. Adv. Mater. 1999, 11, 605. (d) Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Tomasik, P. Appl. Phys. Lett. 2000, 77, 933. (e) Kim, Y. H.; Shin, D. C.; Kim, S. H.; Ko, C. H.; Yu, H. S.; Chae, Y. S.; Know, S. K. Adv. Mater. 2001, 13, 1690. (f) Chan, L. H.; Yeh, H. C.; Chen, C. T. Adv. Mater. 2001, 13, 1637. (g) Shirota, Y. J. Mater. Chem. 2000, 10, 1. (h) Wu, I. W.; Lin, J. T.; Tao, Y. T. Balasubramaniam, E. Adv. Mater. 2000, 12, 688.
  6. [6] (a) Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471. (b) Segura, J. L. Acta Polym. 1998, 49, 319.
  7. [7] (a) Tang C. W. SID Digest 1997, F-413. (b) Sato, Y.; Ishinosawa, S.; Kanai, H. IEEE J. Selected Topics Quantum Electron. 1998, 4, 40. (c) Kijima, Y.; Asai, N.; Kishii, N.; Tamura, S. I. IEEE. Trans. Electron. Devices. 1997, 44, 1222. (d) Kim, Y.; Lee, J. G.; Kim, S. W. J. Korean Phys. Soc. 1999, 35, S269 (e) Liu, Y.; Gua, J.; Feng, J.; Zhang, H.; Li, Y.; Wang, Y. Appl. Phys. Lett. 2001, 78, 2300. (f) Jiang, X. Y.; Zhang, Z. L.; Zheng, X. Y.; Wu, Y. Z.; Xu, S. H. Thin Solid Film 2001, 401, 251. (g) Pang, J.; Tao, Y.; Freiberg, S.; Yang, X. P.; D’Iorio, M.; Wang, S. J. Mater. Chem. 2002, 12, 206. (h) Tang, B. Z.; Zhan, X.; Yu, G.; Lee, P. P. S.; Liu, Y.; Zhu, D. J. Mater. Chem. 2001, 11, 2974.
  8. [8] (a) Yeh, H. C.; Lee, R. H.; Chan, L. H.; Lin, T. Y. J.; Chen, C. T.; Balasubramaniam, E.; Tao, Y. T. Chem. Mater. 2001, 13, 2788. (b) Balasubramaniam, E.; Tao, Y. T.; Danel, A.; Tomasik, P. Chem. Mater. 2000, 12, 2788. (c) Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Wisla, A.; Tomasik, P. J. Mater. Chem. 2001, 11, 768. (d) Ko, C. W.; Tao, Y. T.; Danel, A.; Kreminska, L.; Tomasik, P. Chem. Mater. 2001, 13, 2441. (e) Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Jarosz, B.; Tomasik, P. Chem. Mater. 2001, 13, 1207. (f) Thomas, K. R. J.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123, 9404.
  9. [9] (a) Shi, J.; Tang, C. W. Appl. Phys. Lett. 1997, 70, 1665. (b) Hmada, Y.; Sano, T.; Shibata, K.; Kuroki, K. Jpn. J. Appl. Phys. 1995, 34, L824.
  10. [10] (a) Koene. B. E.; Loy, D. E.; Thompson, M. E. Chem. Mater. 1998, 10, 2235. (b) Naito, K.; Miura, A. J. Phys. Chem. 1993, 97, 6240.
  11. [11] Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453.
  12. [12] (a) Forster, T. Discuss Faraday Soc. 1959, 27, 2. (b) Kido, J.; Shionoya, H.; Nagai, K. Appl. Phys. Lett. 1995, 67, 2281.
  13. [13] Bulovic, V.; Shoustikov, A.; Baldo, M. A.; Bose, E.; Kozlov, V. G.; Thomson, M. E.; Forrest, S. R. Chem. Phys. Lett. 1998, 287, 455.
  14. [14] Bulovic, V.; Deshpande, R.; Thomson, M. E.; Forrest, S. R. Chem. Phys. Lett. 1999, 308, 317. 
 


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.