Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Yit-Tsong Chen1,2

1Department of Chemistry National Taiwan University Taipei, Taiwan 106, R.O.C.
2Institute of Atomic and Molecular Sciences Academia Sinica, P.O. Box 23-166 Taipei, Taiwan 106, R.O.C.


 

Received: April 15, 2002
Accepted: May 17, 2002
Publication Date: June 1, 2002

Download Citation: ||https://doi.org/10.6180/jase.2002.5.2.05  


ABSTRACT


In this article, I will discuss the optical properties of SiO2-nanoparticles that we have investigated recently by photoluminescence (PL) spectroscopy. In particular, I will show the blue-shifts of PL, originating from the electron-hole recombination of the self-trapped exciton (STE), observed in smaller-sized SiO2-nanoparticles. To explain the size effect in relating to the STE PL shift, a question has been raised on whether it is appropriate to apply the quantum confinement (QC) theory usually used for the Mott-Wannier type excitons in semiconductors to wide band-gap material, such as silica. In this study, a laser-heating model of free excitons (FEs) to activate lattice phonons has been developed, rather than the QC effect, to interpret the blue-shifts of STE PL in smaller-sized SiO2-nanoparticles. The blue-shift of STE PL is actually resulted from phonon-assisted PL due to the thermalization of the SiO2-nanoparticle system during laser irradiation.


Keywords: Size Effect, Photoluminescence, SiO2 Nanoparticles


REFERENCES


  1. [1] Trukhin, A. N. J. Non-Cryst. Solids 1992, 149, 32.
  2. [2] Arai, K.; Imai, H.; Hosono, H.; Abe, Y.; Imagawa, H. Appl. Phys. Lett. 1988, 53, 1891.
  3. [3] Itoh, C.; Tanimura, K.; Itoh, N.; Itoh, M. Phys. Rev. B 1989, 39, 11183.
  4. [4] Awazu, K.; Kawazoe, H. J. Appl. Phys. 1990, 68, 3584.
  5. [5] Nishikawa, H.; Nakamura, R.; Tohmon, R.; Ohki, Y.; Sakurai, Y.; Nagasawa, K.; Hama, Y. Phys. Rev. B 1990, 41, 7828.
  6. [6] Itoh, C.; Suzuki, T.; Itoh, N. Phys. Rev. B 1990, 41, 3794.
  7. [7] Shluger, A.; Stefanovich, E. Phys. Rev. B 1990, 42, 9664.
  8. [8] Imai, H.; Arai, K.; Hosono, H.; Abe, Y.; Arai, T.; Imagawa, H. Phys. Rev. B 1991, 44, 4812.
  9. [9] Tsai, T. E.; Griscom, D. L. Phys. Rev. Lett. 1991, 67, 2517.
  10. [10] Griscom, D. L. J. Ceram. Soc. Jpn. 1991, 99, 923.
  11. [11] Joosen, W.; Guizard, S.; Martin, P.; Petite, G.; Agostini, P.; Dos Santos, A.; Grillon, G.; Hulin, D.; Migus, A.; Antonetti, A. Appl. Phys. Lett. 1992, 61, 2260.
  12. [12] Kuzuu, N.; Matsumoto, Y.; Murahara, M. Phys. Rev. B 1993, 48, 6952.
  13. [13] Skuja, L. J. Non-Cryst. Solids 1994, 179, 51.
  14. [14] Wilson, M.; Madden, P. A.; Hemmati, M.; Angell, C. A. Phys. Rev. Lett. 1996, 77, 4023.
  15. [15] Skuja, L.; Guttler, B. Phys. Rev. Lett. 1996, 77, 2093.
  16. [16] Skuja, L.; Tanimura, K.; Itoh, N. J. Appl. Phys. 1996, 80, 3518.
  17. [17] Pasquarello, A.; Car, R. Phys. Rev. Lett. 1997, 79, 1766.
  18. [18] Kuzuu, N.; Taga, T.; Kamisugi, N. J. Appl. Phys. 1997, 81, 8011.
  19. [19] Guillot, B.; Guissani, Y. Phys. Rev. Lett. 1997, 78, 2401.
  20. [20] Boero, M.; Pasquarello, A.; Sarnthein, J.; Car, R. Phys. Rev. Lett. 1997, 78, 887.
  21. [21] Nishikawa, N.; Miyake, Y.; Watanabe, E.; Ito, D.; Seol, K. S.; Ohki, Y.; Ishii, K.; Sakurai, Y.; Nagasawa, K. J. Non-Cryst. Solids 1997, 222, 221.
  22. [22] Pacchioni, G.; Ierano, G.; Marquez, A. Phys. Rev. Lett. 1998, 81, 377.
  23. [23] Skuja, L. J. Non-Cryst. Solids 1998, 239, 16.
  24. [24] Skuja, L.; Guttler, B.; Schiel, D.; Silin, A. R. Phys. Rev. B 1998, 58, 14296.
  25. [25] Stevens Kalceff,M. A. Phys. Rev. B 1998, 57, 5674.
  26. [26] Pacchioni, G.; Vitiello, M. Phys. Rev. B 1998, 58, 7745.
  27. [27] Hosono, H.; Kawazoe, H.; Matsunami, N. Phys. Rev. Lett. 1998, 80, 317.
  28. [28] Griscom, D. L.; Mizuguchi, M. J. Non-Cryst. Solids 1998, 239, 66.
  29. [29] Griscom, D. L. in Proceedings of the Thirty-Third Frequency Control Symposium; Electronics Industries Assn., Washington, D. C., U.S.A., 1980; pp 98.
  30. [30] Conley, J. F.; Lenaham, P. M. Appl. Phys. Lett. 1993, 62, 40.
  31. [31] Hess, K.; Tuttle,B. ; Register, F. ; Ferry, D. K. Appl. Phys. Lett. 1999, 75, 3147.
  32. [32] Tsybeskov, L.; Grom, G. F.; Fauchet, P. M.; McCaffrey, J. P.; Baribeau, J.-M.; Sproule, G. I.; Lockwood, D. J. Appl. Phys. Lett. 1999, 75, 2265.
  33. [33] Grom, G. F.; Lockwood, D. J.; McCaffrey, J. P.; Labbe, H. J.; Fauchet, P. M.; White, B.; Diener, J.; Kovalev, D.; Koch, F.; Tsybeskov, L. Nature 2000, 407, 358.
  34. [34] Pavesi, L.; Dal Negro, L.; Mazzoleni, C.; Franzo, G.; Priolo, F. Nature 2000, 408, 440.
  35. [35] Lucovsky, G.; Yang, J.; Chao, S. S.; Tyler, J. E.; Czubatyj, W. Phys. Rev. B 1983, 28, 3225.
  36. [36] Glinka, Yu. D.; Naumenko, S. N.; Degoda, V. Ya. J.Non-Cryst. Solids 1993, 152, 219.
  37. [37] El-Shall, M. S.; Li, S.; Turkki, T.; Graiver, D.; Pernisz, U. C.; Baraton, M. I. J. Phys. Chem. B 1995, 99, 17805.
  38. [38] Seol, K. S.; Ohki, Y.; Nishikawa, H.; Takiyama, M.; Hama, Y. J. Appl. Phys. 1996, 80, 6444.
  39. [39] Glinka, Yu. D.; Jaroniec, M. J. Appl. Phys. 1997, 82, 3499.
  40. [40] Glinka, Yu. D. JETP (Eng. Transl.) 1997, 84, 957.
  41. [41] Goldberg, M.; Fitting, H.-J.; Trukhin, A. J. Non-Cryst. Solids 1997, 220, 69.
  42. [42] Trukhin, A. N.; Goldberg, M.; Jansons, J.; Fitting, H.-J.; Tale, I. A. J. Non-Cryst. Solids 1998, 223, 114.
  43. [43] Prokes, S. M.; Carlos, W. E.; Veprek, S.; Ossadnic, Ch. Phys. Rev. B 1998, 58, 15632.
  44. [44] Glinka, Yu. D.; Lin, S. H.; Chen, Y.-T. Appl. Phys. Lett. 1999, 75, 778.
  45. [45] Wilson, W. L.; Szajowski, P. F.; Brus, L.E. Science 1993, 262, 1242.
  46. [46] Brus, L. E.; Szajowski, P. F.; Wilson, W. L.; Harris, T. D.; Schuppler, S.;Citrin, P. H. J. Am. Chem. Soc. 1995, 117, 2915.
  47. [47] Canham, L. T. Appl. Phys. Lett. 1990, 57, 1046.
  48. [48] Cullis, A. G.; Canham, L. T.; Calcott, P. D. J. J. Appl. Phys. 1997, 82, 909.
  49. [49] Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Science 2000, 287, 1471.
  50. [50] Wolkin, M. V.; Jorne, J.; Fauchet, P. M.; Allan, G.; Delerue, C. Phys. Rev. Lett. 1999, 82, 197.
  51. [51] Glinka, Yu. D.; Lin, S. H.; Chen, Y.-T. Phys. Rev. B 2000, 62, 4733.
  52. [52] Glinka, Yu. D.; Lin, S. H.; Hwang, L. P.; Chen, Y.-T. J. Phys. Chem. B 2000, 104, 8652.
  53. [53] Efros Al. L.; Efros, A. L. Fiz. Tekh. Poluprovodn. 1982, 16, 1209.
  54. [54] Brus, L. E. J. Chem. Phys. 1983, 79, 5566.
  55. [55] Godmanis, I. T.; Trukhin, A. T.; Hubner, K. Phys. Status Solidi B 1983, 116, 279.
  56. [56] Shen, Y. R. The Principles of Nonlinear Optics; Wiley, New York, U.S.A., 1984.
  57. [57] Bunkin, F. B.; Kazakov, A. E.; Fedorov, M. V. Sov. Phys. Usp. 1973, 15, 416.
  58. [58] Kroll N. M.; Watson, K. M. Phys. Rev. A 1973, 8, 804.
  59. [59] Glinka Yu. D.; Jaroniec, M. Phys. Rev. A 1997, 56, 3056.
  60. [60] Glinka, Yu. D.; Hwang, L. P.; Lin, S. H.; Chen,Y.-T.; Tolk, N. H. Phys. Rev. B 2001, 64, 085421.
  61. [61] Rashba, E. I. Excitons; Rashba, E. I. and Sturge, M. D., Ed.; Elsevier, Amsterdam, 1987; pp 273. 


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.