REFERENCES
- [1] Boyd, S., Ghaoui, L. E., Feron, E. and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, (1994).
- [2] Davison, E. J. (ed.), "Benchmark Problems for Control System Design,'' Report of the IFAC Theory Committee, May, (1990).
- [3] Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B. A., "State-Space Solutions to Standard H2 and H ∞ Control Problems,'' IEEE Trans. Automat. Contr., Vol. 34, pp. 831-847, (1989).
- [4] Edmunds, J. M., "Control System Design and Analysis using Closed-loop Nyquist and Bode Array," Int. J. Control, Vol. 30, No. 5, pp. 773-802, (1979).
- [5] Gahinet, P. and Nemirovskii, A., LMI Lab: A Package for Manipulating and Solving LMI's, Version 2.0, (1993).
- [6] Gahinet, P. and Ignat, A., "Low-Order H∞ Synthesis via LMIs,'' Proc., pp. 1499-1500, (1994).
- [7] Gahinet, P. and Apkarian, P., "A Linear Matrix Inequality Approach to H∞ Control,'' Int. J. Robust and Nonlinear Control, Vol. 4, pp. 421-448, (1994).
- [8] Geromel, J. C., Souza, C. C. de, and Skelton, R. E., "LMI Numerical Solutions for Output Feedback Stabilization,'' Proc., pp. 40-44. (1994).
- [9] Ghaoui, L. E. and Balkrishnan, V., "Synthesis of Fixed-Structure Controllers via Numerical Optimization,'' Proc., pp. 2678-2683. (1994).
- [10] Grigoriadis, K. M. and Skelton, R. E., "Fixed-Order Controller Problems Using Alternating Projection Methods,'' Proc., pp. 2003-2008. (1994).
- [11] Goddard, P. J. and Glover, K., "Controller Reduction: Weights for Stability and Performance Preservation,'' Proceedings of the 32nd Conference on Decision and Control, pp. 2903-2908, San Antonio, Texas, December (1993).
- [12] Goddard, P. J. and Glover, K., "Performance Preserving Frequency Weighted Controller Approximation: a Coprime Factorization Approach,'' Proceedings of the 33rd Conference on Decision and Control, Orlando, Florida, December (1994).
- [13] Iwasaki, T. and Skelton, R. E., "All Controllers for the General H ∞ Control Problem: LMI Existence Conditions and State Space Formulas,'' Automatica, Vol. 30, pp. 1307-1317, (1994).
- [14] Iwasaki, T. and Skelton, R. E., "A Unified Approach to Fixed Order Controller Design via Linear Matrix Inequalities,'' Proc., pp. 35-39, (1994).
- [15] Kailath, T., Linear Systems, Prentice Hall, Inc., New Jersey, (1980).
- [16] Khargonekar, P. P., Petersen, I. P., and Rotea, M. A., "H ∞ -Optimal Control with State-Feedback," IEEE Trans. Automat. Contr., Vol. AC-33, pp. 786-788, (1988).
- [17] Lenz, K. E., Khargonekar, P. P., and Doyle, J. C., "Controller Order Reduction with Guaranteed Stability and Performance,'' Proc. American Control Conference, pp. 1697-1698. (1987).
- [18] Mustafa, D. and Glover, K., "Controller Reduction by H ∞ -Balanced Truncation," IEEE Trans. Automat. Contr., Vol. AC-36, pp. 669-682, (1991).
- [19] Shiau, J. K. and Chow, J. H., "Structurally Constrained H∞ Suboptimal Control Design Using an Iterative Linear Matrix Inequality Algorithm Based on a Dual Design Formulation," Tamkang Journal of Science and Engineering, Vol. 1, No. 2, pp. 133-143, (1998).
- [20] Shiau, J. K., "Robust Decentralized Control: Model-Matching Formulation and Iterative Convex Programming Solutions," Ph.D. Thesis, Rensselaer Polytechnic Institute, December (1995).
- [21] Taranto, G. N., "Robust Control Design for Power System Damping Controllers with Application to FACTS Devices," Ph.D. Thesis, Rensselaer Polytechnic Institute, December (1994).