Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Setyo Hariyadi Suranto Putro1This email address is being protected from spambots. You need JavaScript enabled to view it., Bambang Junipitoyo1, Suyatmo1, Sutardi2, and Wawan Aries Widodo2

1Aircraft Maintenance Engineering Department, Politeknik Penerbangan Surabaya, Surabaya, Indonesia

2Mechanical Engineering Department, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia



Received: August 28, 2023
Accepted: October 25, 2023
Publication Date: January 4, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  

Aerodynamic performance and noise are important things to consider when using highlift devices on aircraft wings. The use of high-lift devices that aim to improve aerodynamics has the side effect of noise in its use. Aerodynamic performance and noise can be estimated by numerical simulation which in this study uses NACA 43018. The numerical simulation in this study uses Ansys 19.1 with the k − ε Realizable turbulent model. The research model uses several angles of attack α including 0, 2, 4, 6, 8, 10, 12, 15, 16, 17, 19, and 20. The models are plain wing, leading edge-slat combined with plain flap, and leading edge-slat with slotted flap. The use of leading-edge slats and flaps improved the aerodynamic performance at all observed angles of attack for both plain flaps and slotted flaps. The use of a leading-edge slat enhances the flow transition process from laminar to turbulent in addition to increasing the flow momentum so that the separation point is pushed towards the trailing edge. Velocity fluctuations show an increase in noise value in the use of leading-edge slats and flaps with a significant value, especially in the wingtip area. The velocity fluctuations also show the potential for vorticity, especially at high-velocity fluctuations. In addition, an increase in wake topology in the area behind the trailing edge.

Keywords: aeroacoustic, aerodynamic, leading-edge slat, plain flap, slotted flap

  1. [1] S. Gudmundsson. General Aviation Aircraft Design : Applied Methods. First edit. New York: ButterworthHeinemann is an imprint of Elsevier, 2013, 1048.
  2. [2] C. E. Dole, J. E. Lewis, J. R. Badick, and B. A. Johnson. Flight theory and aerodynamics. 2017th ed. 4. 3. Hoboken, New Jersey: John Wiley & Sons, Inc., 2017, 57–71.
  3. [3] B. Nebenführ, H. Yao, S. H. Peng, and L. Davidson. “Hybrid RANS/LES simulations for aerodynamic and aeroacoustic analysis of a multi-element airfoil”. In: 19th AIAA/CEAS Aeroacoustics Conference. Berlin, Germany: American Institute of Aeronautics and Astronautics, 2013, 64. DOI: 10.2514/6.2013-2066.
  4. [4] K. A. Pascioni and L. N. Cattafesta. “Aeroacoustic Measurements of Leading-edge Slat Noise”. In: 22nd AIAA/CEAS Aeroacoustics Conference, 2016. May. Lyon, France: American Institute of Aeronautics and Astronautics, 2016, 1–20. DOI: 10.2514/6.2016-2960.
  5. [5] K. A. Pascioni, L. N. Cattafesta, and M. M. Choudhari. “An experimental investigation of the 30P30N multi-element high-lift airfoil”. In: 20th AIAA/CEAS Aeroacoustics Conference. January 2015. Atlanta, Georgia: American Institute of Aeronautics and Astronautics, 2014, 1–16. DOI: 10.2514/6.2014-3062.
  6. [6] K. A. Pascioni and L. N. Cattafesta, (2018) “Unsteady characteristics of a slat-cove flow field" Physical Review Fluids 3(3): 34607. DOI: 10.1103/PhysRevFluids.3.034607.
  7. [7] B. W. Pomeroy, J. M. Diebold, P. J. Ansell, and M. S. Selig, (2014) “Study of burst wakes in a multi-element airfoil flowfield" AIAA Journal 52(4): 821–831. DOI: 10.2514/1.J052680.
  8. [8] Y. Zhang, H. Chen, K. Wang, and M. Wang, (2017) “Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation" AIAA Journal 55(12): 4219–4233. DOI: 10.2514/1.J055853.
  9. [9] N. Deng, Q. Qu, and R. K. Agarwal. “Numerical study of the aerodynamics of rectangular multielement wing in ground effect”. In: 2018 Applied Aerodynamics Conference. Atlanta, Georgia: American Institute of Aeronautics and Astronautics, 2018, 1–17. DOI: 10.2514/6.2018-4115.
  10. [10] A. M. Chuen and W. M. Chan. “Mesh effects on Flow Solutions for a 2-d Multi-Element Airfoil Using Structured Overset Methods”. In: AIAA Aviation 2020 Forum. 1 PartF. AIAA, 2020, 1–32. DOI: 10.2514/6.2020-3222.
  11. [11] Y. Jin, F. Liao, and J. Cai, (2020) “Numerical simulation of 30p30n multi-element airfoil using delayed detachededdy simulation" Aiaa Aviation 2020 Forum (June): DOI: 10.2514/6.2020-2556.
  12. [12] S. P. Hariyadi, N. Pambudiyatno, Sutardi, and P. Fungky Dyan. “Aerodynamic Characteristics of the Wing Airfoil NACA 43018 in Take Off Conditions with Slat Clearance and Flap Deflection”. In: Lecture Notes in Mechanical Engineering. January. Surabaya: Springer, 2023, 220–229. DOI: 10.1007/978-981-19-0867-5_27.
  13. [13] S. H. S. Putro, S. Sutardi, W. A. Widodo, N. Pambudiyatno, and I. Sonhaji, (2022) “Effect of LeadingEdge Gap Size on Multiple-Element Wing NACA 43018" International Review of Aerospace Engineering (IREASE) 15(12): 30–40.
  14. [14] S. Hariyadi S.P., B. Junipitoyo, W. A. Widodo, I. Sonhaji, and F. Dyan Pertiwi, (2022) “Numerical Simulation Using Slats, Slots, and Flaps in Steady Flight Conditions" Advances in Science and Technology: 22–31. DOI: https: //
  15. [15] H. M. Koch. “Reduction of Aircraft Noise by Wing Design and Add-On Technologies". (phdthesis). University of Technology Braunschweig, 2021, 208.
  16. [16] R. Griesmaier and H.-G. Raumer, (2022) “The Factorization Method and Capon’s Method for Random Source Identification in Experimental Aeroacoustics" Inverse Problems 8(11):
  17. [17] H.-G. Raumer, D. Ernst, and C. Spehr, (2022) “Compensation of Modeling Errors for the Aeroacoustic Inverse Problem with Tools from Deep Learning" Acoustics 4(4): 834–848. DOI: 10.3390/acoustics4040050.
  18. [18] T. A. Smith and C. A. Klettner, (2022) “Airfoil Trailingedge Noise and Drag Reduction at a Moderate Reynolds Number Using Wavy Geometries" Physics of Fluids 34(11): 117107. DOI: 10.1063/5.0120124.
  19. [19] H. K. Jawahar, S. A. S. Ali, and M. Azarpeyvand. “Aeroacoustic Analysis of Slat Tones”. In: Proceedings of INTER-NOISE 2021 - 2021 International Congress and Exposition of Noise Control Engineering. Washington D.C., 2021, 1–15. DOI: 10.3397/IN-2021-3202.
  20. [20] H. Kamliya Jawahar, S. A. Showkat Ali, and M. Azarpeyvand, (2021) “Serrated slat cusp for high-lift device noise reduction" Physics of Fluids 33(1): 1–44. DOI: 10.1063/5.0035178.
  21. [21] J. Watkins and A. Bouferrouk, (2022) “The Effects of a Morphed Trailing-Edge Flap on the Aeroacoustic and Aerodynamic Performance of a 30P30N Aerofoil" Acoustics 4(1): 248–267. DOI: 10.3390/acoustics4010015.
  22. [22] R. J. Ferris, J. Appelbaum, and M. R. Khorrami. “Simulations of a Full-Scale Aircraft with Installed Airframe Noise Reduction Simulations of a Full-Scale Aircraft with Installed Airframe Noise Reduction Technologies”. In: June 2018. 2019. DOI: 10.2514/6.2018-2974.
  23. [23] Y. Zhang, B. Bai, D. Lin, and P. Liu, (2023) “A Numerical Study on the Flap Side-Edge Noise Reduction Using Passive Blowing Air Concept" Aerospace 10(360): 17.
  24. [24] Y. Y. Niu, S. H. Liu, C. C. Chang, and T. I. Tseng, (2012) “A preliminary study of the three-dimensional aerodynamics of flapping wings" Journal of Applied Science and Engineering 15(3): 257–263.
  25. [25] S. W. Chuang, F. L. Lih, and J. M. Miao, (2012) “Effects of reynolds number and inclined angle of stroke plane on aerodynamic characteristics of flapping corrugated airfoil" Journal of Applied Science and Engineering 15(3): 247–256.
  26. [26] A. Kermode, R. Barnard, and D. Philpott. Mechanics of Flight. Harlow, Essex, England: Pearson Education Limited, 2006.
  27. [27] A. K. Kundu. Aircraft Design. First Edit. New York: Cambridge University Press, 2010, 650.
  28. [28] Fluent Inc. FLUENT 6.3 User’s Guide. 2006th ed. 11. 8. Lebanon, NH: Fluent Inc., 2006, 727. DOI: 10.1016/0167-4048(92)90125-b.
  29. [29] ANSYS Fluent Theory Guide. ANSYS Fluent Theory Guide. 2013th ed. 15317. November. Canonsburg, PA: ANSYS, Inc, 2013, 724–746.
  30. [30] N. Mulvany, L. Chen, J. Tu, and B. Anderson, (2004) “Steady-State Evaluation of Two-Equation RANS (Reynolds-Averaged Navier-Stokes) Turbulence Models for High-Reynolds Number Hydrodynamic Flow Simulations" Department of Defence, Australian Government: 1–54.
  31. [31] S. Hariyadi Suranto Putro, Sutardi, W. A. Widodo, and I. Sonhaji. “Numerical Study of Secondary Flow Characteristics on the Use of the Winglets”. In: Journal of Physics: Conference Series. 1726. 1. Samarinda: Journal of Physics: Conference Series, 2021, 1–10. DOI: 10.1088/1742-6596/1726/1/012012.
  32. [32] J. D. Anderson Jr. Computational Fluid Dynamics The Basics with Applications. New York: McGraw-Hill, Inc, 1995, 1–547. DOI: 10.1017/CBO9780511780066. arXiv: arXiv:1011.1669v3.
  33. [33] S. Setyo Hariyadi, Sutardi, W. Widodo, and M. Mustaghfirin, (2018) “Aerodynamics Analysis of the Wingtip Fence Effect on UAV Wing" International Review of Mechanical Engineering 12(10): 837–846. DOI: 10.15866/ireme.v12i10.15517.
  34. [34] F. M. Rahmat, S. Hariyadi, and N. Pambudiyatno. “Effect of Using Triangular Vortex Generator Straight Arrangement in Air Naca 43018 with Smoke Generator”. In: Proceedings of the International Conference on Advance Transportation, Engineering, and Applied Science (ICATEAS 2022). Surabaya: Atlantis Press International BV, 2023, 40–51. DOI: 10.2991/978-94-6463-092-3.
  35. [35] Z. T. Dayanti, S. Hariyadi, and I. S. Rifdian. In: Proceedings of the International Conference on Advance Transportation, Engineering, and Applied Science (ICATEAS 2022). Surabaya: Atlantis Press International BV, 2023, 52–69. DOI: 10.2991/978-94-6463-092-3.
  36. [36] F. Nur Wahyu, S. Hariyadi, and N. Pambudiyatno. “Experimental Study of Airflow Characteristics in Airfoil NACA 43018 with the Addition of Gothic Vortex Generator Using Visualization of Smoke Generator”. In: Proceedings of the International Conference on Advance Transportation, Engineering, and Applied Science (ICATEAS 2022). Surabaya: Atlantis Press International BV, 2023, 86–99. DOI: 10.2991/978-94-6463-092-3.
  37. [37] M. S. Genç, G. Özkan, H. H. Açikel, M. S. Kiri¸s, and R. Yildiz. “Effect of tip vortices on flow over NACA4412 aerofoil with different aspect ratios”. In: EPJ Web of Conferences. 114. Turkey: EDP Sciences, 2016, 2–5. DOI: 10.1051/epjconf/201611402027.
  38. [38] H. Demir, M. Özden, M. S. Genç, and M. Çagda¸s. ˇ “Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios”. In: EPJ Web of Conferences. 114. Turkey: EDP Sciences, 2016, 1–5. DOI: 10.1051/epjconf/201611402016.
  39. [39] M. S. Genç, M. Özden, H. H. Açikel, H. Demir, and I. Isabekov. “Unsteady flow over flexible wings at different low Reynolds numbers”. In: EPJ Web of Conferences. 114. Turkey: EDP Sciences, 2016, 1–6. DOI: 10.1051/epjconf/201611402030.
  40. [40] “Numerical investigation of the wake transition and aerodynamic efficiency of the two-dimensional propulsive wing”. In: 125013. November. AIP Publishing, LLC, 2022, 1–12.
  41. [41] , (2022) “Applied sciences Aerodynamic-Aeroacoustic Optimization of a Baseline Wing and Flap Configuration" Applied Sciences 12(1063): 1–19.
  42. [42] E. Vaezi and S. A. S. Madani. “A novel use of artificial intelligence for the modeling of wing aeroacoustics : An investigation on the efficacy of winglet cant angle”. In: November. AIAA, 2021, 1–12. DOI: 10.13140/RG.2.2.26863.97447.
  43. [43] T. J. Newman. “Towards a Silent Fan: an Investigation of Low-speed Fan Aeroacoustics". (phdthesis). University of Cambridge, 2014. DOI: 10.17863/CAM.14098.



69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.