- [1] X. Yan, H. Huang, Y. Jin, L. Chen, Z. Liang, and Z. Hao, (2023) “Neural architecture search via multi hashing embedding and graph tensor networks for multilingual text classification" IEEE Transactions on Emerging Topics in Computational Intelligence 8(1): 350–363. DOI: 10.1109/TETCI.2023.3301774.
- [2] A.Ekbal et al., (2024) “Atmosphere kamaal ka tha (was wonderful): A multilingual joint learning framework for aspect category detection and sentiment classification" IEEE Transactions on Computational Social Sys tems: DOI: 10.1109/TCSS.2024.3374450.
- [3] J. Gao, P. Li, A. A. Laghari, G. Srivastava, T. R. Gadekallu, S. Abbas, and J. Zhang, (2024) “Incomplete multiview clustering via semidiscrete optimal transport for multimedia data mining in IoT" ACM Transactions on Multimedia Computing, Communications and Applications 20(6): 1–20. DOI: 10.1145/3625548.
- [4] J. Xu, H. Tang, Y. Ren, L. Peng, X. Zhu, and L. He. “Multi-level feature learning for contrastive multi view clustering”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022, 16051–16060.
- [5] S.Xiao, S. Du, Z. Chen, Y. Zhang, and S. Wang, (2023) “Dual fusion-propagation graph neural network for multi view clustering" IEEE Transactions on Multimedia 25: 9203–9215. DOI: DOI:10.1109/TMM.2023.3248173.
- [6] L. Fu, S. Huang, L. Zhang, J. Yang, Z. Zheng, C. Zhang, and C. Chen, (2024) “Subspace-contrastive multi-view clustering" ACM Transactions on Knowl edge Discovery from Data 18(9): 1–35. DOI: 10.1145/367483.
- [7] Y. Sun, Y. Qin, Y. Li, D. Peng, X. Peng, and P. Hu, (2024) “Robust multi-view clustering with noisy corre spondence" IEEE Transactions on Knowledge and Data Engineering: DOI: 10.1109/TKDE.2024.3423307.
- [8] J.Gao, M.Liu, P.Li, A.A.Laghari, A.R.Javed, N.Vic tor, and T. R. Gadekallu, (2023) “Deep incomplete multi view clustering via information bottleneck for pattern min ing of data in extreme-environment IoT" IEEE Internet of Things Journal: DOI: 10.1109/JIOT.2023.3325272.
- [9] S. Shi, F. Nie, R. Wang, and X. Li, (2021) “Multi-view clustering via nonnegative and orthogonal graph recon struction" IEEE transactions on neural networks and learning systems 34(1): 201–214. DOI: 10.1109/ TNNLS.2021.3093297.
- [10] P. Zhang, S. Wang, L. Li, C. Zhang, X. Liu, E. Zhu, Z. Liu, L. Zhou, and L. Luo. “Let the data choose: Flexible and diverse anchor graph fusion for scalable multi-view clustering”. In: Proceedings of the AAAI Conference on Artificial Intelligence. 37. 9. 2023, 11262 11269. DOI: 10.1609/aaai.v37i9.26333.
- [11] Y. Ren, J. Pu, C. Cui, Y. Zheng, X. Chen, X. Pu, and L. He. “Dynamic weighted graph fusion for deep multi view clustering”. In: Proceedings of the 33rd Interna tional Joint Conference on Artificial Intelligence. 2024, 4842–4850.
- [12] W. Yan, Y. Zhang, C. Lv, C. Tang, G. Yue, L. Liao, and W.Lin. “Gcfagg: Global and cross-view feature aggregation for multi-view clustering”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 19863–19872.
- [13] R. Zhang, S. Hang, Z. Sun, F. Nie, R. Wang, and X. Li, (2025) “Anchor-based fast spectral ensemble clustering" Information Fusion 113: 102587. DOI: 10.1016/j.inffus.2024.102587.
- [14] Y. Lin, Y. Gou, X. Liu, J. Bai, J. Lv, and X. Peng, (2022) “Dual contrastive prediction for incomplete multi-view representation learning" IEEE Transactions on Pattern Analysis and Machine Intelligence 45(4): 4447–4461. DOI: 10.1109/TPAMI.2022.3197238.
- [15] J. Pu, C. Cui, X. Chen, Y. Ren, X. Pu, Z. Hao, S. Y. Philip, and L. He. “Adaptive Feature Imputation with Latent Graph for Deep Incomplete Multi-View Clustering”. In: Proceedings of the AAAI Conference on Artificial Intelligence. 38. 13. 2024, 14633–14641. DOI: 10.1609/aaai.v38i13.29380.
- [16] S. Wang, X. Liu, S. Liu, W. Tu, and E. Zhu, (2024) “Scalable and structural multi-view graph clustering with adaptive anchor fusion" IEEE Transactions on Image Processing: DOI: 10.1109/TIP.2024.3444320.
- [17] P. Li, A. A. Laghari, M. Rashid, J. Gao, T. R. Gadekallu, A. R. Javed, and S. Yin, (2022) “A deep multimodal adversarial cycle-consistent network for smart enterprise system" IEEE Transactions on Industrial Informatics 19(1): 693–702. DOI: 10.1109/TII.2022.3197201.
- [18] J. Gao, M. Liu, P. Li, J. Zhang, and Z. Chen, (2024) “Deep Multiview Adaptive Clustering With Semantic In variance" IEEE Transactions on Neural Networks and Learning Systems 35(9): 12965–12978. DOI: 10.1109/TNNLS.2023.3265699.
- [19] H. Kanayama, Y. Zhao, R. Iwamoto, and T. Ohko. “Incorporating syntax and lexical knowledge to mul tilingual sentiment classification on large language models”. In: Findings of the Association for Computa tional Linguistics ACL 2024. 2024, 4810–4817.
- [20] C.WangandM.Banko.“Practical transformer-based multilingual text classification”. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Lan guage Technologies: Industry Papers. 2021, 121–129.