Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Sergei Alexandrov1,2, Yeong-Maw Hwang3This email address is being protected from spambots. You need JavaScript enabled to view it., Elena Lyamina1, and Jun-Ru Chen3

1Ishlinsky Institute for Problems in Mechanics RAS, 101-1 Prospect Vernadskogo, Moscow 119526, Russia

2RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russia

3Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Lien-Hai Rd., Kaohsiung 804, Taiwan


 

Received: November 28, 2023
Accepted: July 25, 2024
Publication Date: September 25, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202507_28(7).0004  


This paper is devoted to developing an experimental/theoretical procedure for identifying yield criteria for powder materials. The experimental part includes several compression tests. The variation of the loading paths in these tests is achieved by deforming a plastically incompressible ring and powder material together. The description of the ring’s material behavior is not required to interpret experimental results, which is an advantage of the proposed method. The theoretical description of the test is provided using an analytical solution, which is also an advantage of the proposed method. The method is adopted for identifying Green’s yield criterion for aluminum powder. Comparison with other predictions of the yield criterion for this material is made.


Keywords: powder materials; yield criterion; compression tests; plasticity theory.


  1. [1] B. Druianov, (1993) “Technological Mechanics of Porous Bodies":
  2. [2] S. Alexandrov, (2010) “Plasticity Theory of Porous and Powder Metals" Cellular and Porous Materials in Structures and Processes: 243–308. DOI: 10.1007/978-3-7091-0297-8_5.
  3. [3] S. Doraivelu, H. Gegel, J. Gunasekera, J. Malas, J. Morgan, and J. Thomas, (1984) “A new yield function for compressible PM materials" International Journal of Mechanical Sciences 26(9): 527–535. DOI: 10.1016/0020-7403(84)90006-7.
  4. [4] A. A. Benzerga, (2023) “On the structure of poroplastic constitutive relations" Journal of the Mechanics and Physics of Solids 178: 105344. DOI: 10.1016/j.jmps.2023.105344.
  5. [5] R. Green, (1972) “A plasticity theory for porous solids" International Journal of Mechanical Sciences 14(4): 215–224. DOI: 10.1016/0020-7403(72)90063-X.
  6. [6] A. L. Gurson, (1977) “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media" Journal of Engineering Materials and Technology 99(1): 2–15. DOI: 10.1115/1.3443401.
  7. [7] N. Bilger, F. Auslender, M. Bornert, and R. Masson, (2002) “New bounds and estimates for porous media with rigid perfectly plastic matrix" Comptes Rendus Mécanique 330(2): 127–132. DOI: 10.1016/S1631-0721(02)01438-9.
  8. [8] A. Maximenko, E. Olevsky, and M. Shtern, (2008) “Plastic behavior of agglomerated powder" Computational Materials Science 43(4): 704–709. DOI: 10.1016/j.commatsci.2008.01.011.
  9. [9] A. Mbiakop, K. Danas, and A. Constantinescu, (2016) “A homogenization based yield criterion for a porous Tresca material with ellipsoidal voids" International Journal of Fracture 200(1): 209–225. DOI: 10.1007/s10704-015-0071-9.
  10. [10] T. Dos Santos and G. Vadillo, (2021) “A closed-form yield criterion for porous materials with Mises–Schleicher– Burzy ´nski matrix containing cylindrical voids" Acta Mechanica 232: 1285–1306. DOI: 10.1007/s00707-020-02925-y.
  11. [11] C. Zheng, H. Wang, Y. Jiang, and G. Li, (2023) “On the yield criterion of porous materials by the homogenization approach and Steigmann–Ogden surface model" Scientific Reports 13(1): 10951. DOI: 10.1038/s41598-023-38050-8.
  12. [12] P. H. Khavasad and S. M. Keralavarma, (2023) “Sizedependent yield criterion for single crystals containing spherical voids" International Journal of Solids and Structures 283: 112478. DOI: https://doi.org/10.1016/j.ijsolstr.2023.112478
  13. [13] A. Cruzado, M. Nelms, and A. Benzerga, (2024) “Effect of non-uniform void distributions on the yielding of metals" Computer Methods in Applied Mechanics and Engineering 421: 116810. DOI: 10.1016/j.cma.2024.116810.
  14. [14] D. Ichikawa, M. Sawada, and S. Suzuki, (2023) “The Compression Angle Dependence of the Strength of Porous Metals with Regularly Aligned Directional Pores" MATERIALS TRANSACTIONS 64(10): 2471–2480. DOI: 10.2320/matertrans.MT-M2023055.
  15. [15] L. M. Alves, P. A. Martins, and J. M. Rodrigues, (2006) “A new yield function for porous materials" Journal of Materials Processing Technology 179(1): 36–43. DOI: 10.1016/j.jmatprotec.2006.03.091.
  16. [16] S. Shima and M. Oyane, (1976) “Plasticity theory for porous metals" International Journal of Mechanical Sciences 18(6): 285–291. DOI: 10.1016/0020-7403(76) 90030-8.
  17. [17] Y.-M. Hwang, S.-K. Yin, H.-C. Yu, and Y.-H. Tsai, (2022) “Finite element analysis of rotating compression forming of powder materials" The International Journal of Advanced Manufacturing Technology 123(3): 793–807. DOI: 10.1007/s00170-022-10218-y.