Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Yafan LIU1This email address is being protected from spambots. You need JavaScript enabled to view it. and Wenjun MA2,3

1Department of Architectural Engineering, Shijiazhuang College of Applied Technology, Shijiazhuang, Hebei 050000, China

2Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050000, China

3Hebei Provincial Academy of Emergency Management Scieces, Shijiazhuang, Shijiazhuang Hebei 050000, China


 

 

Received: December 12, 2023
Accepted: August 12, 2024
Publication Date: September 25, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202507_28(7).0002  


The assessment of the load-bearing capacity of piles holds significant importance in the design of pile foundations. This paper presents hybridized support vector regression (SVR) models by utilizing the Artificial Rabbit Optimization (ARO) and the Black Widow Optimization Algorithm (BWOA) to predict the bearing capacity of concrete piles. A repository comprising 472 reports on static load tests conducted on driven piles was employed for the study. The dataset was allocated into three parts: the training set (70%), the validation set ( 15% ), and the testing set ( 15% ). Multiple criteria for assessing quality were utilized to evaluate the effectiveness of the models. The first rank belonged to the SVR model integrated with the ARO algorithm, where it could gain the higher value of R2 in all of training (R2=0.9876), validating (R2=0.9778), and testing sections $\left(R^2=0.9874\right)$, and the lowest value of RMSE in all the training (RMSE=39.393), validating (RMSE=53.727) and testing sections (RMSE=38.082). The findings indicate that the suggested model is highly appropriate for predicting the capacity of concrete piles. 

 


Keywords: Concrete piles; Bearing capacity; Estimation; Regression analysis; Artificial Rabbit optimization


  1. [1] E. Momeni, R. Nazir, D. J. Armaghani, and H. Maizir, (2015) “Application of artificial neural network for predicting shaft and tip resistances of concrete piles" Earth Sciences Research Journal 19: 85–93. DOI: 10.15446/esrj.v19n1.38712.
  2. [2] M. Drusa, F. Gago, and J. Vlˇcek, (2016) “Contribution to estimating bearing capacity of pile in clayey soils" Civil and Environmental Engineering 12: 128–136. DOI: 10.1515/cee-2016-0018.
  3. [3] F. P. Nejad and M. B. Jaksa, (2017) “Load-settlement behavior modeling of single piles using artificial neural networks and CPT data" Computers and Geotechnics 89: 9–21. DOI: 10.1016/j.compgeo.2017.04.003.
  4. [4] Z. Buzrukov, I. Yakubjanov, and M. Umataliev. “Features of the joint work of structures and pile foundations on loess foundations”. In: 264. EDP Sciences, 2021, 02048. DOI: 10.1051/e3sconf/202126402048.
  5. [5] K. Józefiak, A. Zbiciak, M. Ma´slakowski, and T. Piotrowski, (2015) “Numerical modelling and bearing capacity analysis of pile foundation" Procedia Engineering 111: 356–363. DOI: 10.1016/j.proeng.2015.07.101.
  6. [6] G. G. Meyerhof, (1976) “Bearing capacity and settlement of pile foundations" Journal of the Geotechnical Engineering Division 102: 197–228. DOI: 10.1061/AJGEB6.0000243.
  7. [7] I. Shooshpasha, A. Hasanzadeh, and A. Taghavi, (2013) “Prediction of the axial bearing capacity of piles by SPT-based and numerical design methods" Geomate Journal 4: 560–564. DOI: 10.21660/2013.8.2118.
  8. [8] X. J. Chai, K. Deng, C. F. He, and Y. F. Xiong, (2021) “Laboratory Model Tests on Consolidation Performance of Soil Column with Drained-Timber Rod" Advances in Civil Engineering 2021: 6698894. DOI: 10.1155/2021/6698894.
  9. [9] G. S. Budi, M. Kosasi, and D. H. Wijaya, (2015) “Bearing capacity of pile foundations embedded in clays and sands layer predicted using PDA test and static load test" Procedia Engineering 125: 406–410. DOI: 10.1016/j.proeng.2015.11.101.
  10. [10] W. Kozłowski and D. Niemczynski, (2016) “Methods for estimating the load bearing capacity of pile foundation using the results of penetration tests-case study of road viaduct foundation" Procedia engineering 161: 1001–1006. DOI: 10.1016/j.proeng.2016.08.839.
  11. [11] M. Amjad, I. Ahmad, M. Ahmad, P. Wróblewski, P. Kami´nski, and U. Amjad, (2022) “Prediction of pile bearing capacity using XGBoost algorithm: modeling and performance evaluation" Applied Sciences 12: 2126. DOI: 10.3390/app12042126.
  12. [12] B. Ma, Z. Li, K. Cai, M. Liu, M. Zhao, B. Chen, Q. Chen, and Z. Hu, (2021) “Pile-Soil Stress Ratio and Settlement of Composite Foundation Bidirectionally Reinforced by Piles and Geosynthetics under Embankment Load" Advances in Civil Engineering 2021(1): 5575878. DOI: 10.1155/2021/5575878.
  13. [13] S. Nurdin, K. Sawada, and S. Moriguchi. “Design criterion of reinforcement on thick soft clay foundations of traditional construction method in Indonesia”. In: 258. EDP Sciences, 2019, 03010. DOI: 10.1051/matecconf/201925803010.
  14. [14] E. Momeni, R. Nazir, D. J. Armaghani, and H. Maizir, (2014) “Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN" Measurement 57: 122– 131. DOI: 10.1016/j.measurement.2014.08.007.
  15. [15] T. A. Pham, H.-B. Ly, V. Q. Tran, L. V. Giap, H.-L. T. Vu, and H.-A. T. Duong, (2020) “Prediction of pile axial bearing capacity using artificial neural network and random forest" Applied Sciences 10: 1871. DOI: 10.3390/app10051871.
  16. [16] T. A. Pham, V. Q. Tran, H.-L. T. Vu, and H.-B. Ly, (2020) “Design deep neural network architecture using a genetic algorithm for estimation of pile bearing capacity" PLoS One 15: e0243030. DOI: 10.1371/journal.pone.0243030.
  17. [17] N. Shariatmadari, A. A. ESLAMI, and P. F. M. KARIM, (2008) “Bearing capacity of driven piles in sands from SPT–applied to 60 case histories" 32: 125–140. DOI: 10.22099/ijstc.2008.716.
  18. [18] M. R. Svinkin, (2019) “Sensible determination of pile capacity by dynamic methods" Geotechnical research 6: 52–67. DOI: 10.1680/jgere.18.00032.
  19. [19] H. Nguyen, M.-T. Cao, X.-L. Tran, T.-H. Tran, and N.-D. Hoang, (2023) “A novel whale optimization algorithm optimized XGBoost regression for estimating bearing capacity of concrete piles" Neural Computing and Applications 35: 3825–3852. DOI: 10.1007/s00521-022-07896-w.
  20. [20] F. P. Nejad, M. B. Jaksa, M. Kakhi, and B. A. McCabe, (2009) “Prediction of pile settlement using artificial neural networks based on standard penetration test data" Computers and geotechnics 36: 1125–1133. DOI: 10.1016/j.compgeo.2009.04.003.
  21. [21] A. T. C. Goh, F. H. Kulhawy, and C. G. Chua, (2005) “Bayesian neural network analysis of undrained side resistance of drilled shafts" Journal of Geotechnical and Geoenvironmental Engineering 131: 84–93. DOI: 10.1061/(ASCE)1090-0241(2005)131:1(84).
  22. [22] M. A. Shahin and M. B. Jaksa, (2005) “Neural network prediction of pullout capacity of marquee ground anchors" Computers and Geotechnics 32: 153–163. DOI: 10.1016/j.compgeo.2005.02.003.
  23. [23] N. O. Nawari, R. Liang, and J. Nusairat, (1999) “Artificial intelligence techniques for the design and analysis of deep foundations" Electronic Journal of Geotechnical Engineering 4: 1–21.
  24. [24] V.-H. Nhu, N.-D. Hoang, V.-B. Duong, H.-D. Vu, and D. T. Bui, (2020) “A hybrid computational intelligence approach for predicting soil shear strength for urban housing construction: a case study at Vinhomes Imperia project, Hai Phong city (Vietnam)" Engineering with Computers 36: 603–616. DOI: 10.1007/s00366-019-00718-z.
  25. [25] B. T. Pham, C. Qi, L. S. Ho, T. Nguyen-Thoi, N. Al-Ansari, M. D. Nguyen, H. D. Nguyen, H.-B. Ly, H. V. Le, and I. Prakash, (2020) “A novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soil" Sustainability 12: 2218. DOI: 10.3390/su12062218.
  26. [26] E. Momeni, D. J. Armaghani, S. A. Fatemi, and R. Nazir, (2018) “Prediction of bearing capacity of thinwalled foundation: a simulation approach" Engineering with Computers 34: 319–327. DOI: 10.1007/s00366-017-0542-x.
  27. [27] E. Momeni, M. B. Dowlatshahi, F. Omidinasab, H. Maizir, and D. J. Armaghani, (2020) “Gaussian process regression technique to estimate the pile bearing capacity" Arabian Journal for Science and Engineering 45: 8255–8267. DOI: 10.1007/s13369-020-04683-4.
  28. [28] R. U. Kulkarni and D. M. Dewaikar, (2017) “Prediction of interpreted failure loads of rock-socketed piles in Mumbai Region using hybrid artificial neural networks with genetic algorithm" Int. J. Eng. Res 6: 365–372. DOI: 10.17577/IJERTV6IS060196.
  29. [29] D. J. Armaghani, R. S. N. S. B. R. Shoib, K. Faizi, and A. S. A. Rashid, (2017) “Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rocksocketed piles" Neural Computing and Applications 28: 391–405. DOI: 10.1007/s00521-015-2072-z.
  30. [30] L. Wang, Q. Cao, Z. Zhang, S. Mirjalili, and W. Zhao, (2022) “Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems" Engineering Applications of Artificial Intelligence 114: 105082. DOI: 10.1016/j.engappai.2022.105082.
  31. [31] V. Hayyolalam and A. A. P. Kazem, (2020) “Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems" Engineering Applications of Artificial Intelligence 87: 103249. DOI: 10.1016/j.engappai.2019.103249.
  32. [32] E. H. Houssein, M. M. Emam, and A. A. Ali, (2021) “An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm" Expert Systems with Applications 185: 115651. DOI: 10.1016/j.eswa.2021.115651.
  33. [33] N. A. Munirah, M. A. Remli, N. M. Ali, H. W. Nies, M. S. Mohamad, and K. N. S. W. S. Wong, (2020) “The development of parameter estimation method for Chinese hamster ovary model using black widow optimization algorithm" International Journal of Advanced Computer Science and Applications 11: DOI: 10.14569/ IJACSA.2020.0111126.
  34. [34] C. Cortes and V. Vapnik, (1995) “Support-vector networks" Machine learning 20: 273–297. DOI: 10.1007/BF00994018.
  35. [35] M.-T. Puth, M. Neuhäuser, and G. D. Ruxton, (2014) “Effective use of Pearson’s product–moment correlation coefficient" Animal behaviour 93: 183–189. DOI: 10.1016/j.anbehav.2014.05.003.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.