Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

I Putu Mahendra1This email address is being protected from spambots. You need JavaScript enabled to view it., Laurenz Yulindry Sihombing1, Sahri Tarigan1, Renaldi Malay1, and Khatarina Meldawati Pasaribu2

1Program Studi Kimia, Fakultas Sains, Institut Teknologi Sumatera, Desa Way Huwi, Kecamatan Jati Agung, Lampung Selatan, Lampung – 35365, Indonesia

2Pusat Penelitian Biomassa dan Bioproduk, Badan Riset Inovasi Nasional, Indonesia


 

 

Received: March 12, 2024
Accepted: June 23, 2024
Publication Date: September 11, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202506_28(6).0012  


This study delves into the synthesis and characterization of cellulose nanofibers (NFCs) and their nanobiocomposites incorporating coinage nanoparticles ( Ag,ZnO, and CuO ). NFCs were derived from oil palm empty fruit bunches, yielding fibers with diameters below 5 nm. Silver nanoparticles were synthesized using a reduction method, resulting in spherical particles sized between 10-25 nm. The integration of these nanoparticles into the NFCs matrix was confirmed through SEM, TEM, FT-IR, and XRD analyses. FT-IR spectrum of cellulose nanofibers exhibited peaks at 3399 − 3164 cm−1 for hydroxyl groups, 2925 − 2812 cm−1 for the cellulose skeleton, and 1013 cm−1 for the -C-O-C/-C-O-H group. Significant changes were observed in the spectrum post-nanoparticle addition, notably at 1412 and 1317 cm−1 . SEM analysis revealed microdomains of metallic nanoparticles dispersed within the cellulose nanofiber matrix, contributing to increased molecular orientation and crystallinity index. The crystallinity index of cellulose nanofiber films varied: NFC alone exhibited 76.27%, NFC − ZnO 78.54%, NFC-CuO 77.34%, NFC-Ag 76.29%, and NFC-All 77.95%. These variations directly impacted the mechanical properties of the nanobiocomposites, which exhibited significant improvements. Biological analysis confirmed antimicrobial efficacy against E. coli, S. aureus, and C. albicans due to the presence of metallic nanoparticles. Furthermore, water vapor permeability assessments concluded that the nanobiocomposites are suitable for food packaging applications. These findings underscore the promise of NFC-based nanobiocomposites with coinage nanoparticles for advanced packaging materials. Future research avenues should focus on optimizing nanoparticle loading, refining dispersion techniques, and exploring further applications for these versatile nanobiocomposites


Keywords: Cellulose nanofiber, Nanoparticle, Ag, ZnO, CuO


  1. [1] I. P. Mahendra, B. Wirjosentono, H. Ismail, and J. A. Mendez, (2019) “Thermal and Morphology Properties of Cellulose Nanofiber from TEMPO-oxidized Lower part of Empty Fruit Bunches (LEFB)" Open Chemistry 17: 526–536. DOI: 10.1515/chem-2019-0063.
  2. [2] N. A. Rosli, I. Ahmad, F. H. Anuar, and I. Abdullah, (2019) “Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly(lactic acid)- natural rubber blends" Cellulose 26: 3205–3218. DOI: 10.1007/s10570-019-02262-x.
  3. [3] M. S. Hasanin, (2022) “Cellulose-Based Biomaterials: Chemistry and Biomedical Applications" Starch - Stärke 74: DOI: 10.1002/star.202200060.
  4. [4] X. Huang, Y. Ji, L. Guo, Q. Xu, L. Jin, Y. Fu, and Y. Wang, (2022) “Incorporating tannin onto regenerated cellulose film towards sustainable active packaging" Industrial Crops and Products 180: 114710. DOI: 10. 1016/j.indcrop.2022.114710.
  5. [5] L. V. Hai, L. Zhai, H. C. Kim, P. S. Panicker, D. H. Pham, and J. Kim, (2020) “Chitosan Nanofiber and Cellulose Nanofiber Blended Composite Applicable for Active Food Packaging" Nanomaterials 10: 1752–1765. DOI: 10.3390/nano10091752.
  6. [6] E. A. Safitri, I. P. Mahendra, A. E. Putra, M. A. Ghifari, D. D. Yanti, Y. Yusnaidar, B. Ariwahjoedi, and J. A. Mendez, (2021) “Multicolor PEGDA/LCNF Hydrogel in the Presence of Red Cabbage Anthocyanin Extract" Gels 7: 160–172. DOI: 10.3390/gels7040160.
  7. [7] M. P. Arrieta, L. Garrido, S. Faba, A. Guarda, M. J. Galotto, and C. L. de Dicastillo, (2020) “Cucumis metuliferus Fruit Extract Loaded Acetate Cellulose Coatings for Antioxidant Active Packaging" Polymers 12: 1248–1266. DOI: 10.3390/polym12061248.
  8. [8] W. Tongdeesoontorn, L. J. Mauer, S. Wongruong, P. Sriburi, and P. Rachtanapun, (2020) “Physical and Antioxidant Properties of Cassava Starch–Carboxymethyl Cellulose Incorporated with Quercetin and TBHQ as Active Food Packaging" Polymers 12: 366–383. DOI: 10. 3390/polym12020366.
  9. [9] F. Yu, X. Fei, Y. He, and H. Li, (2021) “Poly(lactic acid)- based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging" International Journal of Biological Macromolecules 186: 770–779. DOI: 10.1016/j.ijbiomac.2021.07.097.
  10. [10] Z. Yu, W. Wang, F. Kong, M. Lin, and A. Mustapha, (2019) “Cellulose nanofibril/silver nanoparticle composite as an active food packaging system and its toxicity to human colon cells" International Journal of Biological Macromolecules 129: 887–894. DOI: 10.1016/j.ijbiomac.2019.02.084.
  11. [11] L. F. Zemljiˇc, T. Tkavc, A. Vesel, and O. Šauperl, (2013) “Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material" Applied Surface Science 265: 697–703. DOI: 10.1016/j.apsusc.2012.11.086.
  12. [12] A. El-Gendy, R. E. Abou-Zeid, A. Salama, M. Diab, and M. El-Sakhawy, (2017) “TEMPO-oxidized cellulose nanofibers/polylactic acid/TiO2 as antibacterial bionanocomposite for active packaging" Egyptian Journal of Chemistry 60: 4–8. DOI: 10.21608/ejchem.2017.1835.1153.
  13. [13] A. L. T. Zheng, S. Sabidi, T. Ohno, T. Maeda, and Y. Andou, (2022) “Cu2O/TiO2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications" Chemosphere 286: 131731. DOI: 10.1016/j.chemosphere.2021.131731.
  14. [14] D. Roilo, C. A. Maestri, M. Scarpa, P. Bettotti, and R. Checchetto, (2018) “Gas barrier and optical properties of cellulose nanofiber coatings with dispersed TiO 2 nanoparticles" Surface and Coatings Technology 343: 131–137. DOI: 10.1016/j.surfcoat.2017.10.015.
  15. [15] D. Shahdan, R. S. Chen, F. D. Zailan, M. Sabtu, and S. Ahmad, (2024) “γ - radiation for improved reinforcement effect of single and hybrid nano-clay and cellulose nanofiber in thermoplastic natural rubber nanocomposite" Radiation Physics and Chemistry 218: 111550. DOI: 10.1016/j.radphyschem.2024.111550.
  16. [16] A. Liu and L. A. Berglund, (2013) “Fire-retardant and ductile clay nanopaper biocomposites based on montmorrilonite in matrix of cellulose nanofibers and carboxymethyl cellulose" European Polymer Journal 49: 940–949. DOI: 10.1016/j.eurpolymj.2012.12.017.
  17. [17] X. Long, X. Wei, M. Hu, J. Yu, S. Wang, L. Zhou, and J. Liao, (2023) “Anisotropic and high-strength SiO2/cellulose nanofiber composite aerogel with thermal superinsulation and superhydrophobicity" Ceramics International 49: 28621–28628. DOI: 10.1016/j.ceramint.2023.06.116.
  18. [18] A. Naderahmadian, B. Eftekhari-Sis, H. Jafari, M. Zirak, M. Padervand, G. Mahmoudi, and M. Samadi, (2023) “Cellulose nanofibers decorated with SiO2 nanoparticles: Green adsorbents for removal of cationic and anionic dyes; kinetics, isotherms, and thermodynamic studies" International Journal of Biological Macromolecules 247: 125753. DOI: 10.1016/j.ijbiomac.2023.125753.
  19. [19] Y. Tang, F. Yu, X. Liu, Z. Qin, G. Fan, and H. Sun, (2024) “Engineering robust ZnO/Au decorated biomassderived carbonaceous platforms for integrated antibacterial and electromagnetic wave absorbing properties" Carbon 225: 119117. DOI: 10.1016/j.carbon.2024.119117.
  20. [20] S. Mežnari´c, I. J. Badovinac, I. Šari´c, R. Peter, M. K. Markovic, G. Ambroži´c, and I. Gobin, (2022) “Superior UVA-photocatalytic antibacterial activity of a doublelayer ZnO/Al2O3 thin film grown on cellulose by atomic layer deposition (ALD)" Journal of Environmental Chemical Engineering 10: 108095. DOI: 10.1016/j.jece.2022.108095.
  21. [21] N. Chokesawatanakit, S. Thammasang, S. Phanthanawiboon, J. T. Knijnenburg, S. Theerakulpisut, and K. Kamwilaisak, (2024) “Enhancing the multifunctional properties of cellulose fabrics through in situ hydrothermal deposition of TiO2 nanoparticles at low temperature for antibacterial self-cleaning under UV–Vis illumination" International Journal of Biological Macromolecules 256: 128321. DOI: 10.1016/j.ijbiomac.2023.128321.
  22. [22] Y.-Y. Xie, X.-H. Hu, Y.-W. Zhang, F. Wahid, L.-Q. Chu, S.-R. Jia, and C. Zhong, (2020) “Development and antibacterial activities of bacterial cellulose/graphene oxideCuO nanocomposite films" Carbohydrate Polymers 229: 115456. DOI: 10.1016/j.carbpol.2019.115456.
  23. [23] D. Xu, P. Liang, X. Ying, X. Li, and Q. Cheng, (2024) “Development of cellulose/ZnO based bioplastics with enhanced gas barrier, UV-shielding effect and antibacterial activity" International Journal of Biological Macromolecules: 132335. DOI: 10.1016/j.ijbiomac.2024.132335.
  24. [24] S. Zhou, H. Peng, A. Zhao, R. Zhang, T. Li, X. Yang, and D. Lin, (2024) “Synthesis of bacterial cellulose nanofibers/Ag nanoparticles: Structure, characterization and antibacterial activity" International Journal of Biological Macromolecules 259: 129392. DOI: 10.1016/j.ijbiomac.2024.129392.
  25. [25] H. Almasi, P. Jafarzadeh, and L. Mehryar, (2018) “Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties" Carbohydrate Polymers 186: 273–281. DOI: 10.1016/j.carbpol.2018.01.067.
  26. [26] W. Wu, Y. Zhou, J. Pan, Y. Wu, G. Goksen, and P. Shao, (2023) “Multibranched flower-like ZnO anchored on pectin/cellulose nanofiber aerogel skeleton for enhanced comprehensive antibacterial capabilities" Carbohydrate Polymers 322: 121320. DOI: 10.1016/j.carbpol.2023.121320.
  27. [27] X. Zhu, H. Li, L. Cai, Y. Wu, J. Wang, S. Xu, S. Wang, H. Wang, D. Wang, and J. Chen, (2024) “ZnO nanoparticles encapsulated cellulose-lignin film for antibacterial and biodegradable food packaging" iScience: 110008. DOI: 10.1016/j.isci.2024.110008.
  28. [28] J. Shang, Y. Sun, T. Zhang, Z. Liu, and H. Zhang, (2019) “Enhanced Antibacterial Activity of Ag Nanoparticle-Decorated ZnO Nanorod Arrays" Journal of Nanomaterials 2019: 1–7. DOI: 10.1155/2019/3281802.
  29. [29] G. Y. Nigussie, G. M. Tesfamariam, B. M. Tegegne, Y. A. Weldemichel, T. W. Gebreab, D. G. Gebrehiwot, and G. E. Gebremichel, (2018) “Antibacterial Activity of Ag-Doped TiO 2 and Ag-Doped ZnO Nanoparticles" International Journal of Photoenergy 2018: 1–7. DOI: 10.1155/2018/5927485.
  30. [30] T. Joseph, D. K. Mahapatra, A. Esmaeili, Ł. Piszczyk, M. Hasanin, M. Kattali, J. Haponiuk, and S. Thomas, (2023) “Nanoparticles: Taking a Unique Position in Medicine" Nanomaterials 13: 574. DOI: 10.3390/nano13030574.
  31. [31] M. Emam, M. M. H. Soliman, W. H. Eisa, and M. Hasanin, (2022) “Solid and liquid green Ag nanoparticles based on banana peel extract as an eco-friendly remedy for ringworm in pets" Surface and Interface Analysis 54: 607–618. DOI: 10.1002/sia.7073.
  32. [32] S. V. Gudkov, D. E. Burmistrov, D. A. Serov, M. B. Rebezov, A. A. Semenova, and A. B. Lisitsyn, (2021) “A Mini Review of Antibacterial Properties of ZnO Nanoparticles" Frontiers in Physics 9: 1–12. DOI: 10.3389/fphy.2021.641481.
  33. [33] N. Elsayed, M. S. Hasanin, and M. Abdelraof, (2022) “Utilization of olive leaves extract coating incorporated with zinc/selenium oxide nanocomposite to improve the postharvest quality of green beans pods" Bioactive Carbohydrates and Dietary Fibre 28: 100333. DOI: 10.1016/j.bcdf.2022.100333.
  34. [34] G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, and E. Banin, (2012) “Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress" Small 8: 3326–3337. DOI: 10.1002/smll.201200772.
  35. [35] M. S. Hasanin and A. M. Youssef, (2022) “Ecofriendly bioactive film doped CuO nanoparticles based biopolymers and reinforced by enzymatically modified nanocellulose fibers for active packaging applications" Food Packaging and Shelf Life 34: 100979. DOI: 10.1016/j.fpsl.2022.100979.
  36. [36] H. Su, H. Li, H. Lin, X. Shi, Y. Du, Y. Luo, and H. Deng, (2022) “Highly sensitive formaldehyde sensors based on CuO/ZnO composite nanofibrous mats using porous cellulose acetate fibers as templates" International Journal of Biological Macromolecules 206: 653–660. DOI: 10.1016/j.ijbiomac.2022.02.167.
  37. [37] S. Dehghani, S. H. Peighambardoust, S. J. Peighambardoust, S. V. Hosseini, and J. M. Regenstein, (2019) “Improved mechanical and antibacterial properties of active LDPE films prepared with combination of Ag, ZnO and CuO nanoparticles" Food Packaging and Shelf Life 22: 100391. DOI: 10.1016/j.fpsl.2019.100391.
  38. [38] S. J. Peighambardoust, S. H. Peighambardoust, N. Pournasir, and P. M. Pakdel, (2019) “Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications" Food Packaging and Shelf Life 22: 100420. DOI: 10.1016/j.fpsl.2019.100420.
  39. [39] G. A. Govindasamy, R. B. S. M. N. Mydin, W. N. F. W. E. Effendy, and S. Sreekantan, (2022) “Novel dual-ionic ZnO/CuO embedded in porous chitosan biopolymer for wound dressing application: Physicochemical, bactericidal, cytocompatibility and wound healing profiles" Materials Today Communications 33: 104545. DOI: 10.1016/j.mtcomm.2022.104545.
  40. [40] H. Heidari, F. Teimuri, and A. R. Ahmadi, (2022) “Nanocellulose-based aerogels decorated with Ag, CuO and ZnO nanoparticles: Synthesis, characterization and the antibacterial activity" Polyhedron 213: 115629. DOI: 10.1016/j.poly.2021.115629.
  41. [41] P. Mendis, R. M. de Silva, K. M. N. de Silva, L. A. Wijenayaka, K. Jayawardana, and M. Yan, (2016) “Nanosilver rainbow: a rapid and facile method to tune different colours of nanosilver through the controlled synthesis of stable spherical silver nanoparticles" RSC Advances 6: 48792–48799. DOI: 10.1039/C6RA08336F.
  42. [42] L. Segal, J. Creely, A. Martin, and C. Conrad, (1959) “An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer" Textile Research Journal 29: 786–794. DOI: 10.1177/004051755902901003.
  43. [43] S. Yao, B.-J. Wang, and Y.-M. Weng, (2022) “Preparation and characterization of mung bean starch edible films using citric acid as cross-linking agent" Food Packaging and Shelf Life 32: 100845. DOI: 10.1016/j.fpsl.2022.100845.
  44. [44] G. Asnag, A. Oraby, and A. Abdelghany, (2019) “Green synthesis of gold nanoparticles and its effect on the optical, thermal and electrical properties of carboxymethyl cellulose" Composites Part B: Engineering 172: 436–446. DOI: 10.1016/j.compositesb.2019.05.044.
  45. [45] R. Yoksan and S. Chirachanchai, (2010) “Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties" Materials Science and Engineering: C 30: 891–897. DOI: 10.1016/j.msec.2010.04.004.
  46. [46] A. M. Nafchi, A. K. Alias, S. Mahmud, and M. Robal, (2012) “Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide" Journal of Food Engineering 113: 511–519. DOI: 10.1016/j.jfoodeng.2012.07.017.
  47. [47] M. Ahmed, A. Menazea, and A. Abdelghany, (2020) “Blend biopolymeric nanofibrous scaffolds of cellulose acetate/ε-polycaprolactone containing metallic nanoparticles prepared by laser ablation for wound disinfection applications" International Journal of Biological Macromolecules 155: 636–644. DOI: 10.1016/j.ijbiomac.2020.03.257.
  48. [48] X. Yang, Q. Yu, W. Gao, X. Tang, H. Yi, and X. Tang, (2022) “The mechanism of metal-based antibacterial materials and the progress of food packaging applications: A review" Ceramics International 48: 34148–34168. DOI: 10.1016/j.ceramint.2022.08.249.
  49. [49] I. Sondi and B. Salopek-Sondi, (2004) “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria" Journal of Colloid and Interface Science 275: 177–182. DOI: 10.1016/J.JCIS.2004.02.012.
  50. [50] V. Nandakumar, C. Huang, A. Pulgar, V. Balasubramanian, G. Wu, P. Chandar, and B. M. Moudgil, (2019) “Particle assisted removal of microbes from surfaces" Journal of Colloid and Interface Science 533: 190–197. DOI: 10.1016/J.JCIS.2018.08.043.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.