- [1] M. N. Uddin, M. A. Abido, and M. A. Rahman, (2005) “Real-time performance evaluation of a genetic-algorithmbased fuzzy logic controller for IPM motor drives" IEEE Transactions on Industry Applications 41: 246–252. DOI: 10.1109/TIA.2004.840995.
- [2] Z. Ibrahim and E. Levi, (2002) “A comparative analysis of fuzzy logic and PI speed control in high-performance AC drives using experimental approach" IEEE Transactions on Industry Applications 38: 1210–1218. DOI: 10.1109/TIA.2002.802993.
- [3] M. A. Rahman and M. A. Hoque, (1997) “Online selftuning ANN-based speed control of a PM DC motor" IEEE/ASME Transactions On Mechatronics 2: 169– 178. DOI: 10.1109/3516.622969.
- [4] S. Y. Yi and M. J. Chung, (1998) “Robustness of fuzzy logic control for an uncertain dynamic system" IEEE Transactions on Fuzzy Systems 6: 216–225. DOI: 10.1109/91.669018.
- [5] C.-K. Lin, L.-C. Fu, and T.-H. Liu. “Design and implementation of a nonlinear speed controller with adaptive backstepping sliding mode technique for an IPMSM drive system”. In: Proceedings of SICE Annual Conference 2010. IEEE. 2010, 110–115.
- [6] F. G. Areed, S. F. Saraya, and M. M. A. Elsalam, (2010) “Adaptive control of a synchronous motor via a sliding mode decomposition technique" Ain Shams Engineering Journal 1: 121–129. DOI: 10.1016/j.asej.2011.03.005.
- [7] M. Cernat, V. Comnac, M. Cotorogea, P. Korondi, S. Ryvkin, and R.-M. Cernat. “Sliding mode control of interior permanent magnet synchronous motors”. In: 7th IEEE International Power Electronics Congress. Technical Proceedings. CIEP 2000 (Cat. No. 00TH8529). IEEE. 2000, 48–53. DOI: 10.1109/CIEP.2000.891390.
- [8] C.-T. Pan and S.-M. Sue, (2005) “A linear maximum torque per ampere control for IPMSM drives over fullspeed range" IEEE Transactions on energy conversion 20: 359–366. DOI: 10.1109/TEC.2004.841517.
- [9] M. N. Uddin and J. Lau. “Adaptive backstepping based nonlinear control of an IPMSM drive”. In: 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551). 5. IEEE. 2004, 3451–3457. DOI: 10.1109/PESC.2004.1355085.
- [10] M. Vilathgamuwa, M. Rahman, and K. Tseng. “Nonlinear control of interior permanent magnet synchronous motor”. In: Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No. 00CH37129). 2. IEEE. 2000, 1115–1120. DOI: 10.1109/IAS.2000.881971.
- [11] J. Zhou, Y. Wang, and R. Zhou. “Adaptive backstepping control of separately excited DC motor with uncertainties”. In: PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No. 00EX409). 1. IEEE. 2000, 91–96. DOI: 10.1109/ICPST.2000.900037.
- [12] M. N. Uddin, T. S. Radwan, and M. A. Rahman, (2002) “Performances of fuzzy-logic-based indirect vector control for induction motor drive" IEEE Transactions on Industry applications 38: 1219–1225. DOI: 10.1109/TIA.2002.802990.
- [13] H. Mathur and S. Ghosh. “A comprehensive analysis of intelligent controllers for load frequency control”. In: 2006 IEEE Power India Conference. IEEE. 2006, 5– pp. DOI: 10.1109/POWERI.2006.1632619.
- [14] M. N. Uddin and M. A. Rahman. “Fuzzy logic based speed control of an IPM synchronous motor drive”. In: Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No. 99TH8411). 3. IEEE. 1999, 1259– 1264. DOI: 10.1109/CCECE.1999.804872.
- [15] M. N. Uddin. “Comparative analysis of intelligent controllers for high performance interior permanent magnet synchronous motor drive systems”. In: Large Engineering Systems Conference on Power Engineering, 2003. IEEE. 2003, 50–54. DOI: 10.1109/LESCPE.2003.1204678.
- [16] M. Abido, M. N. Uddin, and M. Rahman. “A new fuzzy logic controller based IPM synchronous motor drive”. In: IEEE International Electric Machines and Drives Conference, 2003. IEMDC’03. 3. IEEE. 2003, 1795–1801. DOI: 10.1109/IEMDC.2003.1210696.
- [17] C. Butt and M. Rahman. “Limitations of simplified fuzzy logic controller for IPM motor drive”. In: Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting. 3. IEEE. 2004, 1891–1898. DOI: 10.1109/IAS.2004.1348727.
- [18] M. N. Uddin, (2010) “An adaptive-filter-based torqueripple minimization of a fuzzy-logic controller for speed control of IPM motor drives" IEEE transactions on industry applications 47: 350–358. DOI: 10.1109/TIA.2010.2090316.
- [19] Y. Zhetpissov, A. Kaibaldiyev, and T. D. Do. “Robust H-infinity speed control of permanent magnet synchronous motor without load torque observer”. In: 2019 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE. 2019, 1–4. DOI: 10.1109/VPPC46532.2019.8952432.
- [20] F. Oudjama, A. Boumediene, K. Saidi, and D. Boubekeur, (2023) “Robust speed control in nonlinear electric vehicles using H-infinity control and the LMI approach" J. Intell Syst. Control 2: 170–182. DOI: 10.56578/jisc020305.
- [21] N. V. Ramana and V. L. N. Sastry, (2015) “A Novel speed control strategy for five phases permanent magnet synchronous motor with linear quadratic regulator" International Journal of Computer and Electrical Engineering 7: 408. DOI: 10.17706/ijcee.2015.7.6.408-416.
- [22] M. Huang, Y. Deng, H. Li, and J. Wang, (2022) “Torque ripple attenuation of PMSM using improved robust twodegree-of-freedom controller via extended sliding mode parameter observer" ISA transactions 129: 558–571. DOI: 10.1016/j.isatra.2022.01.033.
- [23] M. Abu-Ali, F. Berkel, M. Manderla, S. Reimann, R. Kennel, and M. Abdelrahem, (2022) “Deep learningbased long-horizon MPC: robust, high performing, and computationally efficient control for PMSM drives" IEEE transactions on power electronics 37(10): 12486–12501. DOI: 10.1109/TPEL.2022.3172681.
- [24] V. Ghaffari, S. V. Naghavi, A. A. Safavi, and M. Shafiee. “An LMI framework to design robust MPC for a class of nonlinear uncertain systems”. In: 2013 9th Asian control Conference (ASCC). IEEE. 2013, 1–5. DOI: 10.1109/ASCC.2013.6606169.
- [25] S. Niu, Y. Luo, W. Fu, and X. Zhang, (2020) “Robust model predictive control for a three-phase PMSM motor with improved control precision" IEEE Transactions on Industrial Electronics 68: 838–849. DOI: 10.1109/TIE.2020.3013753.
- [26] D. Li and P. Kakosimos. “Encoderless predictive control of pmsm drives combining sliding-mode and luenberger observers”. In: 2023 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE. 2023, 2405–2412. DOI: 10.1109/APEC43580.2023.10131478.
- [27] D. Mohanraj, J. Gopalakrishnan, B. Chokkalingam, and L. Mihet-Popa, (2022) “Critical aspects of electric motor drive controllers and mitigation of torque ripple" IEEE Access 10: 73635–73674. DOI: 10.1109/ACCESS.2022.3187515.
- [28] D. Mohanraj, R. Aruldavid, R. Verma, K. Sathiyasekar, A. B. Barnawi, B. Chokkalingam, and L. Mihet-Popa, (2022) “A review of BLDC motor: state of art, advanced control techniques, and applications" Ieee Access 10: 54833–54869. DOI: 10.1109/ACCESS.2022.3175011.
- [29] M. Deepak, G. Janaki, C. Bharatiraja, and J. O. Ojo, (2023) “An enhanced model predictive direct torque control of SRM drive based on a novel modified switching strategy for low torque ripple" IEEE Journal of Emerging and Selected Topics in Power Electronics: DOI: 10.1109/JESTPE.2023.3343732.
- [30] W. Xu, Y. Jiang, and C. Mu, (2016) “Novel composite sliding mode control for PMSM drive system based on disturbance observer" IEEE Transactions on Applied Superconductivity 26: 1–5. DOI: 10.1109/TASC.2016. 2611623.
- [31] Y. Wei, D. Ke, X. Yu, F. Wang, and J. Rodríguez, (2024) “Adaptive Inertia Observer-based Model-Free Predictive Current Control for PMSM Driving System of Electric Vehicles" IEEE Transactions on Industry Applications: DOI: 10.1109/TIA.2024.3396123.
- [32] Y. Wei, D. Ke, X. Yu, F. Wang, and J. Rodríguez, (2024) “Adaptive Inertia Observer-based Model-Free Predictive Current Control for PMSM Driving System of Electric Vehicles" IEEE Transactions on Industry Applications: DOI: 10.1109/TIA.2024.3396123.
- [33] H. Ahn, S. Kim, J. Park, Y. Chung, M. Hu, and K. You. “Adaptive Quick Sliding Mode Reaching Law and Disturbance Observer for Robust PMSM Control Systems”. In: Actuators. 13. 4. MDPI. 2024, 136. DOI: 10.3390/act13040136.
- [34] Z. Zhang, X. Yang, W. Wang, K. Chen, N. C. Cheung, and J. Pan, (2024) “Enhanced Sliding Mode Control for PMSM Speed Drive Systems Using a Novel Adaptive Sliding Mode Reaching Law Based on Exponential Function" IEEE Transactions on Industrial Electronics: DOI: 10.1109/TIE.2023.3347845.
- [35] Y. Liu, B. Zi, X. Zhang, and D. Xu. “Electromechanical Coupling Dynamic Model and Speed Response Characteristics of the Flexible Robotic Manipulator”. In: Intelligent Robotics and Applications: 10th International Conference, ICIRA 2017, Wuhan, China, August 16–18, 2017, Proceedings, Part II 10. Springer. 2017, 91–100. DOI: 10.1007/978-3-319-65292-4_9.
- [36] J. Hu, L. Liu, D.-w. Ma, and N. Ullah, (2015) “Adaptive nonlinear feedback control of chaos in permanentmagnet synchronous motor system with parametric uncertainty" Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229: 2314–2323. DOI: 10.1177/0954406214557344.