Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Changlu LiuThis email address is being protected from spambots. You need JavaScript enabled to view it.

Hunan Technical College of Railway High-speed, Hengyang 421000, Hunan, China


Received: November 10, 2023
Accepted: March 22, 2024
Publication Date: June 22, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  

Power Quality (PQ) characteristics, such as Power Factor, Total Harmonic Distortion (THD), and ideal output regulation, are the main elements that have a considerable impact on the effective operation of power electronic converters. The uncontrolled diode bridge rectifier in this investigation is shown to have pulsing input current. However, this problem may be solved by implementing a powerful active wave shaping control mechanism. The THDrequirements can be satisfied, and the power factor (PF) can be enhanced to go closer to unity. It also controls the voltage that is generated. The control system under discussion has a cascade architecture, with a fractional-order PID controller that has been optimized using the Antlion Optimization (ALO) algorithm making up the outer loop of the system. This controller modifies the amplitude of the reference current for the inductor based on the output voltage. Contrarily, the inner loop uses a Lyapunov-based Backstepping Control (BSC) technique to guarantee that the system’s asymptotic stability and convergence. Additionally, the suggested system does not need a precise mathematical model since the Black-box approach is used. This method results in a less computing burden, a more straightforward implementation, and less dependency on the model’s states. The suggested strategy makes use of a cascade controller to provide enough performance and results in preserving power quality. As a consequence, the simulation results analysis shows the significant robustness and rapid dynamics seen in a variety of complicated circumstances.

Keywords: CCMBoost, Power Factor Correction, PID controller, Backstepping Method, H-Bridge Inverter

  1. [1] A. Farhadi, S. Mohammadi, S. A. Hosseini, M. M. Shahbazi, and M. H. Moradi. “Power Factor Correc tion of Parallel-Connected Boost Converter Utilizing a Fuzzy Logic-Based Controller”. In: IEEE, 2023, 1–6. DOI: 10.1109/ICTEM56862.2023.10083763.
  2. [2] H. Mollaee, S. M. Ghamari, S. A. Saadat, and P. Wheeler, (2021) “A novel adaptive cascade controller de sign on a buck–boost DC–DC converter with a fractional order PID voltage controller and a self-tuning regula tor adaptive current controller" IET Power Electronics 14(11): 1920–1935.
  3. [3] V. Roosta, S. M. Ghamari, H. Mollaee, and M. H. Zarif, (2023) “A novel adaptive neuro linear quadratic regulator (ANLQR) controller design on DC-DC buck converter" IET Renewable Power Generation 17: 1242–1254. DOI: 10.1049/rpg2.12679.
  4. [4] S. A. Saadat, S. M. Ghamari, and H. Mollaee, (2022) “Adaptive backstepping controller design on Buck con verter with a novel improved identification method" IET Control Theory & Applications 16: 485–495. DOI: 10.1049/cth2.12241.
  5. [5] S. M. Ghamari, F. Khavari, and H. Mollaee, (2023) “Lyapunov-based adaptive PID controller design for buck converter" Soft Computing 27: 5741–5750. DOI: 10.1007/s00500-022-07797-z.
  6. [6] D. D. C. Pereira, M. R. D. Silva, E. M. Silva, and F. L. Tofoli, (2015) “Comprehensive review of high power factor ac-dc boost converters for PFC applications" Inter national Journal of Electronics 102: 1361–1381. DOI: 10.1080/00207217.2014.981871.
  7. [7] H. Li, S. Li, and W. Xiao, (2022) “Star power factor correction architecture" IEEE Transactions on Power Electronics 38: 3531–3545. DOI: 10.1109/TPEL.2022.3225823.
  8. [8] H.-C. Chiang, F.-J. Lin, J.-K. Chang, K.-F. Chen, Y.-L. Chen, and K.-C. Liu, (2016) “Control method for im proving the response of single-phase continuous conduc tion mode boost power factor correction converter" IET Power Electronics 9: 1792–1800. DOI: 10.1049/iet pel.2015.0914.
  9. [9] S. M. Ghamari, H. Mollaee, and F. Khavari, (2021) “Robust self-tuning regressive adaptive controller design for a DC–DC BUCK converter" Measurement 174: 109071.
  10. [10] A. Kessal and L. Rahmani, (2013) “Ga-optimized pa rameters of sliding-mode controller based on both output voltage and input current with an application in the PFC of AC/DC converters" IEEE transactions on power electronics 29: 3159–3165.
  11. [11] J. R. Ortiz-Castrillon, G. E. Mejía-Ruíz, N. Muñoz Galeano, J. M. López-Lezama, and S. D. Saldarriaga Zuluaga, (2021) “PFC single-phase AC/DC boost con verters: Bridge, semi-bridgeless, and bridgeless topologies" Applied Sciences 11: 7651.
  12. [12] P. CODEandC.PRIX, (2006) “Electromagnetic compat ibility (EMC)–Part 3-2: Limits–Limits for harmonic cur rent emissions (equipment input current 16 A per phase) Compatibilité électromagnétique (CEM)–Partie 3-2: Lim ites–Limites pour les émissions de courant harmonique":
  13. [13] H. Mollaee, S. M. Ghamari, and F. Khavari, (2022) “Self-tuning regulator adaptive controller design for DC DCboost converter with a novel robust improved identifi cation method" IET Power Electronics 15: 1365–1379.
  14. [14] K. Kamalapathi, N. Priyadarshi, S. Padmanaban, J. B. Holm-Nielsen, F. Azam, C. Umayal, and V. K. Ra machandaramurthy,(2018) “Ahybrid moth-flame fuzzy logic controller based integrated cuk converter fed brush less DC motor for power factor correction" Electronics 7: 288.
  15. [15] S. M. Ghamari, H. Mollaee, and F. Khavari, (2020) “Design of robust self-tuning regulator adaptive controller on single-phase full-bridge inverter" IET Power Elec tronics 13: 3613–3626.
  16. [16] S. M. Ghamari, H. Gholizade-Narm, and F. Khavari, (2023) “Design of a robust adaptive self-tuning regulator controller on single-phase full-bridge grid-connected in verter" International Journal of Dynamics and Con trol 11: 783–796.
  17. [17] C. González-Castaño, C. Restrepo, F. Sanz, A. Chub, and R. Giral, (2021) “Dc voltage sensorless predictive control of a high-efficiency pfc single-phase rectifier based on the versatile buck-boost converter" Sensors 21: 5107.
  18. [18] F. Khavari, S. M. Ghamari, M. Abdollahzadeh, and H. Mollaee, (2023) “Design of a novel robust type-2 fuzzy-based adaptive backstepping controller optimized with antlion algorithm for buck converter" IET Control Theory & Applications 17: 1132–1143.
  19. [19] Y. Zhou and B.-l. Wang, (2010) “PWM-quasi-sliding mode control for APFC converters" Electrical Engineer ing 92: 43–48.
  20. [20] S. M. Ghamari, H. G. Narm, and H. Mollaee, (2022) “Fractional-order fuzzy PID controller design on buck con verter with antlion optimization algorithm" IET Control Theory & Applications 16: 340–352.
  21. [21] M.Abdollahzadeh, H.Mollaee, S. M. Ghamari, and F. Khavari, (2023) “Designofanovelrobust adaptive neural network-based fractional-order proportional-integrated derivative controller on DC/DC Boost converter" The Journal of Engineering 2023: e12255.
  22. [22] S. A. Saadat, S. M. Ghamari, H. Mollaee, and F. Khavari, (2021) “Adaptive neuro-fuzzy inference systems (ANFIS) controller design on single-phase full-bridge in verter with a cascade fractional-order PID voltage con troller" IET Power Electronics 14: 1960–1972.
  23. [23] S. M. Ghamari, T. Y. Jouybari, H. Mollaee, F. Khavari, and M.Hajihosseini, (2023) “Design of a novel robust adaptive cascade controller for DC-DC buck-boost con verter optimized with neural network and fractional-order PID strategies" The Journal of Engineering 2023: e12244.
  24. [24] J. M. Bosque-Moncusi, H. Valderrama-Blavi, F. Flores-Bahamonde, E. Vidal-Idiarte, and L. Martínez Salamero, (2018) “Using low-cost microcontrollers to im plement variable hysteresis-width comparators for switch ing power converters" IET Power Electronics 11: 787 795.
  25. [25] S.M.Ghamari,F.Khavari,H.Molaee,andP.Wheeler, (2022) “Generalised model predictive controller design for ADC–DCnon-inverting buck–boost converter optimised with a novel identification technique" IET Power Elec tronics 15: 1350–1364.
  26. [26] M. J. Memeghani, S. M. Ghamari, T. Y. Jouybari, H. Mollaee, and P. Wheeler, (2023) “Generalised predic tive controller (GPC) design on single-phase full-bridge inverter with a novel identification method" IET Control Theory & Applications 17: 284–294.
  27. [27] A.Marcos-Pastor,E.Vidal-Idiarte, A. Cid-Pastor, and L. Martinez-Salamero, (2015) “Interleaved digital power factor correction based on the sliding-mode approach" IEEE Transactions on Power Electronics 31: 4641–4653.
  28. [28] R. Langella, A. Testa, and E. Alii. IEEE recommended practice and requirements for harmonic control in electric power systems. IEEE, 2014. DOI: 10.1109/PESS.2001.970154.
  29. [29] A.A.S.Mohamed,H.Metwally,A.El-Sayed,andS.I. Selem, (2019) “Predictive neural network based adaptive controller for grid-connected PV systems supplying pulse load" Solar Energy 193: 139–147.
  30. [30] S. Srinivasan, R. Tiwari, M. Krishnamoorthy, M. P. Lalitha, and K. K. Raj, (2021) “Neural network based MPPT control with reconfigured quadratic boost con verter for fuel cell application" International Journal of Hydrogen Energy 46: 6709–6719. DOI: 10.1016/j.ijhydene.2020.11.121.
  31. [31] N. H. Abbas and A. F. Algamluoli, (2020) “Design ing an Integral LQR Controller for DC-DC X-Converter based on Enhanced Shuffled Frog-Leaping Optimization Algorithm." Journal of Electrical Systems 16:
  32. [32] S. Ferahtia, A. Djeroui, T. Mesbahi, A. Houari, S. Zeghlache, H. Rezk, and T. Paul, (2021) “Optimal adaptive gain LQR-based energy management strategy for battery–supercapacitor hybrid power system" Energies 14: 1660. DOI: 10.3390/en14061660.
  33. [33] M. J. Mahmoodabadi and N. R. Babak, (2020) “Ro bust fuzzy linear quadratic regulator control optimized by multi-objective high exploration particle swarm opti mization for a 4 degree-of-freedom quadrotor" Aerospace Science and Technology 97: 105598.
  34. [34] T. Jeon and I. Paek, (2021) “Design and verification of the LQR controller based on fuzzy logic for large wind turbine" Energies 14: 230. DOI: 10.3390/en14010230.
  35. [35] N.Aouani and C. Olalla, (2020) “Robust LQR control for PWMconverters with parameter-dependent Lyapunov functions" Applied Sciences 10: 7534. DOI: 10.3390/app10217534.
  36. [36] Y. Zou, T. Liu, D. Liu, and F. Sun, (2016) “Reinforce ment learning-based real-time energy management for a hybrid tracked vehicle" Applied energy 171: 372–382.
  37. [37] Y.Liu,D.Zhang,andH.B.Gooi,(2020)“Optimization strategy based on deep reinforcement learning for home energy management" CSEE Journal of Power and En ergy Systems 6: 572–582. DOI: 10.17775/CSEEJPES.2019.02890.
  38. [38] T.K.Nizami,A.Chakravarty, andC.Mahanta,(2017) “A fast learning neuro adaptive control of Buck converter driven PMDC motor: design, analysis and validation" IFAC-PapersOnLine 50: 37–42.
  39. [39] O.F.Kececioglu,H.Acikgoz,A.Gani,andM.Sekkeli, (2019) “Experimental Investigation on Buck Converter Using Neuro–Fuzzy Controller" International Journal of Intelligent Systems and Applications in Engi neering 7: 1–6.
  40. [40] S.Issaadi, W.Issaadi, and A.Khireddine, (2019) “New intelligent control strategy by robust neural network al gorithm for real time detection of an optimized maximum power tracking control in photovoltaic systems" Energy 187: 115881. DOI: 10.1016/
  41. [41] S. Saberi and B. Rezaie, (2021) “Direct model predictive speed control strategy for a PMSM fed by a three-level NPCconverter" Journal of Energy Management and Technology 5: 1–7.
  42. [42] H.-C. Chiang, F.-J. Lin, J.-K. Chang, K.-F. Chen, Y.-L. Chen,andK.-C.Liu,(2016)“Control method for improv ing the response of single-phase continuous conduction mode boost power factor correction converter" IET Power Electronics 9(9): 1792–1800.