- [1] A. Farhadi, S. Mohammadi, S. A. Hosseini, M. M. Shahbazi, and M. H. Moradi. “Power Factor Correc tion of Parallel-Connected Boost Converter Utilizing a Fuzzy Logic-Based Controller”. In: IEEE, 2023, 1–6. DOI: 10.1109/ICTEM56862.2023.10083763.
- [2] H. Mollaee, S. M. Ghamari, S. A. Saadat, and P. Wheeler, (2021) “A novel adaptive cascade controller de sign on a buck–boost DC–DC converter with a fractional order PID voltage controller and a self-tuning regula tor adaptive current controller" IET Power Electronics 14(11): 1920–1935.
- [3] V. Roosta, S. M. Ghamari, H. Mollaee, and M. H. Zarif, (2023) “A novel adaptive neuro linear quadratic regulator (ANLQR) controller design on DC-DC buck converter" IET Renewable Power Generation 17: 1242–1254. DOI: 10.1049/rpg2.12679.
- [4] S. A. Saadat, S. M. Ghamari, and H. Mollaee, (2022) “Adaptive backstepping controller design on Buck con verter with a novel improved identification method" IET Control Theory & Applications 16: 485–495. DOI: 10.1049/cth2.12241.
- [5] S. M. Ghamari, F. Khavari, and H. Mollaee, (2023) “Lyapunov-based adaptive PID controller design for buck converter" Soft Computing 27: 5741–5750. DOI: 10.1007/s00500-022-07797-z.
- [6] D. D. C. Pereira, M. R. D. Silva, E. M. Silva, and F. L. Tofoli, (2015) “Comprehensive review of high power factor ac-dc boost converters for PFC applications" Inter national Journal of Electronics 102: 1361–1381. DOI: 10.1080/00207217.2014.981871.
- [7] H. Li, S. Li, and W. Xiao, (2022) “Star power factor correction architecture" IEEE Transactions on Power Electronics 38: 3531–3545. DOI: 10.1109/TPEL.2022.3225823.
- [8] H.-C. Chiang, F.-J. Lin, J.-K. Chang, K.-F. Chen, Y.-L. Chen, and K.-C. Liu, (2016) “Control method for im proving the response of single-phase continuous conduc tion mode boost power factor correction converter" IET Power Electronics 9: 1792–1800. DOI: 10.1049/iet pel.2015.0914.
- [9] S. M. Ghamari, H. Mollaee, and F. Khavari, (2021) “Robust self-tuning regressive adaptive controller design for a DC–DC BUCK converter" Measurement 174: 109071.
- [10] A. Kessal and L. Rahmani, (2013) “Ga-optimized pa rameters of sliding-mode controller based on both output voltage and input current with an application in the PFC of AC/DC converters" IEEE transactions on power electronics 29: 3159–3165.
- [11] J. R. Ortiz-Castrillon, G. E. Mejía-Ruíz, N. Muñoz Galeano, J. M. López-Lezama, and S. D. Saldarriaga Zuluaga, (2021) “PFC single-phase AC/DC boost con verters: Bridge, semi-bridgeless, and bridgeless topologies" Applied Sciences 11: 7651.
- [12] P. CODEandC.PRIX, (2006) “Electromagnetic compat ibility (EMC)–Part 3-2: Limits–Limits for harmonic cur rent emissions (equipment input current 16 A per phase) Compatibilité électromagnétique (CEM)–Partie 3-2: Lim ites–Limites pour les émissions de courant harmonique":
- [13] H. Mollaee, S. M. Ghamari, and F. Khavari, (2022) “Self-tuning regulator adaptive controller design for DC DCboost converter with a novel robust improved identifi cation method" IET Power Electronics 15: 1365–1379.
- [14] K. Kamalapathi, N. Priyadarshi, S. Padmanaban, J. B. Holm-Nielsen, F. Azam, C. Umayal, and V. K. Ra machandaramurthy,(2018) “Ahybrid moth-flame fuzzy logic controller based integrated cuk converter fed brush less DC motor for power factor correction" Electronics 7: 288.
- [15] S. M. Ghamari, H. Mollaee, and F. Khavari, (2020) “Design of robust self-tuning regulator adaptive controller on single-phase full-bridge inverter" IET Power Elec tronics 13: 3613–3626.
- [16] S. M. Ghamari, H. Gholizade-Narm, and F. Khavari, (2023) “Design of a robust adaptive self-tuning regulator controller on single-phase full-bridge grid-connected in verter" International Journal of Dynamics and Con trol 11: 783–796.
- [17] C. González-Castaño, C. Restrepo, F. Sanz, A. Chub, and R. Giral, (2021) “Dc voltage sensorless predictive control of a high-efficiency pfc single-phase rectifier based on the versatile buck-boost converter" Sensors 21: 5107.
- [18] F. Khavari, S. M. Ghamari, M. Abdollahzadeh, and H. Mollaee, (2023) “Design of a novel robust type-2 fuzzy-based adaptive backstepping controller optimized with antlion algorithm for buck converter" IET Control Theory & Applications 17: 1132–1143.
- [19] Y. Zhou and B.-l. Wang, (2010) “PWM-quasi-sliding mode control for APFC converters" Electrical Engineer ing 92: 43–48.
- [20] S. M. Ghamari, H. G. Narm, and H. Mollaee, (2022) “Fractional-order fuzzy PID controller design on buck con verter with antlion optimization algorithm" IET Control Theory & Applications 16: 340–352.
- [21] M.Abdollahzadeh, H.Mollaee, S. M. Ghamari, and F. Khavari, (2023) “Designofanovelrobust adaptive neural network-based fractional-order proportional-integrated derivative controller on DC/DC Boost converter" The Journal of Engineering 2023: e12255.
- [22] S. A. Saadat, S. M. Ghamari, H. Mollaee, and F. Khavari, (2021) “Adaptive neuro-fuzzy inference systems (ANFIS) controller design on single-phase full-bridge in verter with a cascade fractional-order PID voltage con troller" IET Power Electronics 14: 1960–1972.
- [23] S. M. Ghamari, T. Y. Jouybari, H. Mollaee, F. Khavari, and M.Hajihosseini, (2023) “Design of a novel robust adaptive cascade controller for DC-DC buck-boost con verter optimized with neural network and fractional-order PID strategies" The Journal of Engineering 2023: e12244.
- [24] J. M. Bosque-Moncusi, H. Valderrama-Blavi, F. Flores-Bahamonde, E. Vidal-Idiarte, and L. Martínez Salamero, (2018) “Using low-cost microcontrollers to im plement variable hysteresis-width comparators for switch ing power converters" IET Power Electronics 11: 787 795.
- [25] S.M.Ghamari,F.Khavari,H.Molaee,andP.Wheeler, (2022) “Generalised model predictive controller design for ADC–DCnon-inverting buck–boost converter optimised with a novel identification technique" IET Power Elec tronics 15: 1350–1364.
- [26] M. J. Memeghani, S. M. Ghamari, T. Y. Jouybari, H. Mollaee, and P. Wheeler, (2023) “Generalised predic tive controller (GPC) design on single-phase full-bridge inverter with a novel identification method" IET Control Theory & Applications 17: 284–294.
- [27] A.Marcos-Pastor,E.Vidal-Idiarte, A. Cid-Pastor, and L. Martinez-Salamero, (2015) “Interleaved digital power factor correction based on the sliding-mode approach" IEEE Transactions on Power Electronics 31: 4641–4653.
- [28] R. Langella, A. Testa, and E. Alii. IEEE recommended practice and requirements for harmonic control in electric power systems. IEEE, 2014. DOI: 10.1109/PESS.2001.970154.
- [29] A.A.S.Mohamed,H.Metwally,A.El-Sayed,andS.I. Selem, (2019) “Predictive neural network based adaptive controller for grid-connected PV systems supplying pulse load" Solar Energy 193: 139–147.
- [30] S. Srinivasan, R. Tiwari, M. Krishnamoorthy, M. P. Lalitha, and K. K. Raj, (2021) “Neural network based MPPT control with reconfigured quadratic boost con verter for fuel cell application" International Journal of Hydrogen Energy 46: 6709–6719. DOI: 10.1016/j.ijhydene.2020.11.121.
- [31] N. H. Abbas and A. F. Algamluoli, (2020) “Design ing an Integral LQR Controller for DC-DC X-Converter based on Enhanced Shuffled Frog-Leaping Optimization Algorithm." Journal of Electrical Systems 16:
- [32] S. Ferahtia, A. Djeroui, T. Mesbahi, A. Houari, S. Zeghlache, H. Rezk, and T. Paul, (2021) “Optimal adaptive gain LQR-based energy management strategy for battery–supercapacitor hybrid power system" Energies 14: 1660. DOI: 10.3390/en14061660.
- [33] M. J. Mahmoodabadi and N. R. Babak, (2020) “Ro bust fuzzy linear quadratic regulator control optimized by multi-objective high exploration particle swarm opti mization for a 4 degree-of-freedom quadrotor" Aerospace Science and Technology 97: 105598.
- [34] T. Jeon and I. Paek, (2021) “Design and verification of the LQR controller based on fuzzy logic for large wind turbine" Energies 14: 230. DOI: 10.3390/en14010230.
- [35] N.Aouani and C. Olalla, (2020) “Robust LQR control for PWMconverters with parameter-dependent Lyapunov functions" Applied Sciences 10: 7534. DOI: 10.3390/app10217534.
- [36] Y. Zou, T. Liu, D. Liu, and F. Sun, (2016) “Reinforce ment learning-based real-time energy management for a hybrid tracked vehicle" Applied energy 171: 372–382.
- [37] Y.Liu,D.Zhang,andH.B.Gooi,(2020)“Optimization strategy based on deep reinforcement learning for home energy management" CSEE Journal of Power and En ergy Systems 6: 572–582. DOI: 10.17775/CSEEJPES.2019.02890.
- [38] T.K.Nizami,A.Chakravarty, andC.Mahanta,(2017) “A fast learning neuro adaptive control of Buck converter driven PMDC motor: design, analysis and validation" IFAC-PapersOnLine 50: 37–42.
- [39] O.F.Kececioglu,H.Acikgoz,A.Gani,andM.Sekkeli, (2019) “Experimental Investigation on Buck Converter Using Neuro–Fuzzy Controller" International Journal of Intelligent Systems and Applications in Engi neering 7: 1–6.
- [40] S.Issaadi, W.Issaadi, and A.Khireddine, (2019) “New intelligent control strategy by robust neural network al gorithm for real time detection of an optimized maximum power tracking control in photovoltaic systems" Energy 187: 115881. DOI: 10.1016/j.energy.2019.115881.
- [41] S. Saberi and B. Rezaie, (2021) “Direct model predictive speed control strategy for a PMSM fed by a three-level NPCconverter" Journal of Energy Management and Technology 5: 1–7.
- [42] H.-C. Chiang, F.-J. Lin, J.-K. Chang, K.-F. Chen, Y.-L. Chen,andK.-C.Liu,(2016)“Control method for improv ing the response of single-phase continuous conduction mode boost power factor correction converter" IET Power Electronics 9(9): 1792–1800.