Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Nabil Hayeemasae1, Anuwat Worlee2, and Abdulhakim Masa3This email address is being protected from spambots. You need JavaScript enabled to view it.

1Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

2Faculty of Science and Technology, Fatoni University, Pattani, 94160, Thailand

3Rubber Engineering and Technology Program, International College, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand


 

 

Received: January 16, 2024
Accepted: March 5, 2024
Publication Date: April 29, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202502_28(2).0019  


Natural rubber and acrylic emulsion blends with various calcium carbonate (CaCO3) loadings were tested for their feasibility to serve as coatings on wood substrate. The morphology of the blends ranged from having fully isolated rubber particles dispersed in the acrylic matrix, to those with inter-connected particles, depending on CaCO3 filler content. The size of CaCO3 dispersion in the blends was nanometer sized regardless of its loading level. With increased loading of CaCO3, tan δ peak height decreased, suggesting strong rubber-filler interactions. The incorporation of CaCO3 enhanced tensile properties and wettability of the blends: tensile strength and peel strength were maximized at 10 parts per hundred parts of the polymer. Compared to a commercially available paint, the blends with up to 20% filler achieved a better adhesion on wood substrate by at least 17%, as well as a better corrosion resistance in an accelerated corrosion test, suggesting that these blends may be applied as paint or coating on wood.


Keywords: Natural rubber, Emulsion blend, Calcium carbonate, Coating


  1. [1] S. Moolsin, N. Saksayamkul, and A. Na Wichien, (2017) “Natural rubber grafted poly (methyl methacrylate) as compatibilizer in 50/50 natural rubber/nitrile rubber blend" Journal of Elastomers & Plastics 49(5): 422–439. DOI: 10.1177/0095244316671021.
  2. [2] D. Vidovska and F. H. Maurer, (2006) “Tensile properties and interfacial interactions of bimodal hard/soft latex blends" Composite Interfaces 13(8-9): 819–830. DOI: 10.1163/156855406779366769.
  3. [3] W. Pechurai, C. Nakason, and K. Sahakaro, (2008) “Thermoplastic natural rubber based on oil extended NR and HDPE blends: Blend compatibilizer, phase inversion composition and mechanical properties" Polymer Testing 27(5): 621–631. DOI: 10.1016/j.polymertesting.2008.04.001.
  4. [4] P. Intharapat, D. Derouet, F. Gohier, and C. Nakason, (2009) “Compatibilization of NR/EVA blends by natural rubber grafted poly (dimethyl (methacryloyloxymethyl) phosphonate) compatibilizer" e-Polymers 9(1): 075. DOI: 10.1515/epoly.2009.9.1.917.
  5. [5] O. Boondamnoen, A. R. Azura, M. Ohshima, S. Chuayjuljit, and A. Ariffin, (2013) “Effect of blend ratio and compatibilizer on solution casted treated waste natural rubber latex/polystyrene blends." Songklanakarin Journal of Science & Technology 35(5):
  6. [6] J. T. Varkey, S. Augustine, G. Groeninckx, S. Bhagawan, S. S. Rao, and S. Thomas, (2000) “Morphology and mechanical and viscoelastic properties of natural rubber and styrene butadiene rubber latex blends" Journal of Polymer Science Part B: Polymer Physics 38(16): 2189–2211. DOI: 10.1002/1099- 0488(20000815)38: 163.0.CO;2-E.
  7. [7] H. M. Lim and K. S. Tan, (2022) “Carboxylated acrylonitrile butadiene-natural rubber latex blends with methyl methacrylate grafted natural rubber latex: mechanical properties and morphology" Journal of Rubber Research 25(5): 413–419. DOI: 10.1007/s42464-022-00184-1.
  8. [8] L. Jose and R. Joseph, (2005) “Latex stage blending of natural rubber and poly (vinyl chloride) for improved mechanical properties" International Journal of Polymeric Materials 54(5): 387–396. DOI: 10.1080/00914030590908679.
  9. [9] A. Worlee, N. Homdong, and N. Hayeemasae. “Application of polymer blend based on natural rubber latex and acrylic resin as a binder for wall paints”. In: IOP Conference Series: Materials Science and Engineering. 773. 1. IOP Publishing. 2020, 012032. DOI: 10.1088/1757-899X/773/1/012032.
  10. [10] J. Datta, P. Kosiorek, and M. Włoch, (2016) “Effect of high loading of titanium dioxide particles on the morphology, mechanical and thermo-mechanical properties of the natural rubber-based composites" Iranian Polymer Journal 25: 1021–1035. DOI: 10.1007/s13726-016-0488-7.
  11. [11] Q. Liu, Y. Zhang, and H. Xu, (2008) “Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica" Applied Clay Science 42(1-2): 232–237. DOI: 10.1016/j.clay.2007.12.005.
  12. [12] C.-M. Deng, M. Chen, N.-J. Ao, D. Yan, and Z.-Q. Zheng, (2006) “CaCO3/natural rubber latex nanometer composite and its properties" Journal of applied polymer science 101(5): 3442–3447. DOI: 10.1002/app.24345.
  13. [13] F. M. M. Suki and A. A. Rashid. “Effect of dispersion preparation technique of calcium carbonate (CaCO3) fillers on mechanical properties of natural rubber (NR) latex films”. In: AIP conference proceedings. 1865. 1. AIP Publishing. 2017. DOI: 10.1063/1.4993357.
  14. [14] X. Song, H. Yoshino, H. Shibata, A. Nagatani, and Y. Ueda, (2009) “Mechanical properties of styrene– butadiene–styrene block copolymer composites filled with calcium carbonate treated by liquid polybutadienes" Journal of applied polymer science 113(6): 3661–3670. DOI: 10.1002/app.30362.
  15. [15] I. Surya, S. Maulina, and H. Ismail, (2018) “Effect of epoxidised natural rubbers a calcium carbonate-filled natural rubber compounds" Malays. J. Anal. Sci 22: 1014–1022. DOI: 10.17576/mjas-2018-2206-11.
  16. [16] H.-H. Cai, S.-D. Li, G.-R. Tian, H.-B. Wang, and J.-H. Wang, (2003) “Reinforcement of natural rubber latex film by ultrafine calcium carbonate" Journal of applied polymer science 87(6): 982–985. DOI: 10.1002/app.11410.
  17. [17] M. Lay, N. Hamran, and A. A. Rashid, (2019) “Ultrafine calcium carbonate-filled natural rubber latex film: Mechanical and post-processing properties" Iranian Polymer Journal 28: 849–858. DOI: 10.1007/s13726-019-00748-w.
  18. [18] R. Ninjan, B. Thongnuanchan, N. Lopattananon, and C. Nakason, (2022) “Anti-rust primer for steel based on natural rubber bearing methacrylic functionality" Express Polymer Letters 16(6): 573–590. DOI: 10.3144/ expresspolymlett.2022.43.
  19. [19] J. Wootthikanokkhan and B. Tongrubbai, (2002) “A study on morphology and physical properties of natural– acrylic rubber blends" Journal of applied polymer science 86(7): 1532–1539. DOI: 10.1002/app.10899.
  20. [20] J. Móczó, E. Fekete, K. László, and B. Pukánszky. “Aggregation of particulate fillers: factors, determination, properties”. In: Macromolecular Symposia. 194. 1. Wiley Online Library. 2003, 111–124. DOI: 10.1002/masy.200390071.
  21. [21] M. M. Demir, Y. Z. Menceloglu, and B. Erman, (2006) “Aggregation of fillers blended into random elastomeric networks: theory and comparison with experiments" Macromolecular chemistry and physics 207(16): 1515–1524. DOI: 10.1002/macp.200600185.
  22. [22] S. Thomas, Y. Grohens, and P. Jyotishkumar. Characterization of polymer blends: miscibility, morphology and interfaces. John Wiley & Sons, 2014.
  23. [23] M. A. Bashir, (2021) “Use of dynamic mechanical analysis (DMA) for characterizing interfacial interactions in filled polymers" Solids 2(1): 108–120. DOI: 10.3390/solids2010006.
  24. [24] A. Madathinal Kunjappan, A. Reghunadhan, A. A. Ramachandran, L. Mathew, M. Padmanabhan, D. Laroze, and S. Thomas, (2021) “Discussion on degree of entanglement, chain confinement, and reinforcement efficiency factor of PTT/PE blend nanocomposite embedded with MWCNTs" Polymers for Advanced Technologies 32(8): 2916–2928. DOI: 10.1002/pat.5303.
  25. [25] M. Satyanarayana, P. Sreenath, A. K. Bhowmick, and K. D. Kumar, (2018) “Selective orientation of needlelike sepiolite nanoclay in polymer blend for controlled properties" ACS omega 3(9): 11691–11702. DOI: 10.1021/acsomega.8b01618.
  26. [26] H. Da Costa, L. Visconte, R. Nunes, and C. Furtado, (2000) “The effect of coupling agent and chemical treatment on rice husk ash-filled natural rubber composites" Journal of Applied Polymer Science 76(7): 1019–1027. DOI: 10.1002/(SICI)1097-4628(20000516)76: 73.0.CO;2-%23.
  27. [27] A. H. Monfared and M. Jamshidi, (2019) “Effects of photocatalytic activity of nano TiO2 and PAni/TiO2 nanocomposite on the physical/mechanical performances of acrylic pseudo paints" Progress in Organic Coatings 136: 105300. DOI: 10.1016/j.porgcoat.2019.105300.
  28. [28] E. Phumnok, P. Khongprom, and S. Ratanawilai, (2022) “Preparation of natural rubber composites with high silica contents using a wet mixing process" ACS omega 7(10): 8364–8376. DOI: 10.1021/acsomega.1c05848.
  29. [29] W. Arayapranee and G. L. Rempel, (2008) “A comparison of the properties of rice husk ash, silica, and calcium carbonate filled 75: 25 NR/EPDM blends" Journal of applied polymer science 110(2): 1165–1174. DOI: 10.1002/app.28725.
  30. [30] H. Ismail and L. Mega, (2001) “The effects of a compatibilizer and a silane coupling agent on the mechanical properties of white rice husk ash filled polypropylene/natural rubber blend" Polymer-Plastics Technology and Engineering 40(4): 463–478. DOI: 10.1081/PPT-100002070.
  31. [31] I. Yuningsih, I. S. Rahayu, D. Lumongga, and W. Darmawan, (2020) “Wettability and adherence of acrylic paints on long and short rotation teaks" Wood Material Science & Engineering 15(4): 229–236. DOI: 10.1080/17480272.2019.1575903.
  32. [32] J. Zhang, J. Guo, T. Li, and X. Li, (2010) “Chemical surface modification of calcium carbonate particles by maleic anhydride grafting polyethylene wax" International Journal of Green Nanotechnology: Physics and Chemistry 1(2): P65–P71. DOI: 10.1080/19430871003684341.
  33. [33] S. Matchawet, J. Johns, J. Artchomphoo, K. Boonsong, and U. Sookyung, (2023) “Improving the Performance of Wood Adhesive with Waste Rubber Tire" Trends in Sciences 20(9): 6826–6826. DOI: 10.48048/tis.2023.6826.
  34. [34] Z. Cao, M. Daly, L. Clémence, L. M. Geever, I. Major, C. L. Higginbotham, and D. M. Devine, (2016) “Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods" Applied Surface Science 378: 320–329. DOI: 10.1016/j.apsusc.2016.03.205.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.