Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Muhammad Tayyab NaqashThis email address is being protected from spambots. You need JavaScript enabled to view it.

Department of Civil Engineering, Faculty of Engineering, Islamic University of Madinah, Kingdom of Saudi Arabia


 

 

Received: October 6, 2023
Accepted: November 27, 2023
Publication Date: April 14, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202502_28(2).0011  


As the climate of the globe changes, buildings will need to accommodate new standards for typical and extreme weather. Glass configurations may help adapt structures to these changing climates. The most important features of several glass configurations for energy-efficient buildings are compared in this work. Thermal performance, light transmission, solar heat gain coefficient, sound reduction, structural and mechanical strength, and other factors were considered while evaluating glass configurations. The findings show that glass combinations with higher R-values and lower U-values offer excellent thermal insulation and are advised for high thermal requirements. Conversely, those with higher U-values and lower R-values best serve interior applications with low to moderate thermal demands. Considerations like light transmission, solar heat gain coefficient, sound reduction, structural strength, and mechanical strength can help narrow the options for optimum glass configuration for a particular application. Choosing the appropriate glass arrangement requires careful consideration of several factors to produce an indoor atmosphere that is secure, safe, pleasant, and energy efficient.


Keywords: Glass; Energy Efficiency; Thermal Performance; Light Transmission; Sound Reduction; Structural Strength


  1. [1] M. T. Naqash et al., (2021) “Assessment of rigid steel frames: Ductility versus damageability" Journal of Applied Science and Engineering 24(6): 915–926. DOI: 10.6180/jase.202112_24(6).0012.
  2. [2] F. B. Ola, N. Sekarlangit, B. Michelle, M. D. K. A. Anindita, F. U. Setyaningfebry, et al., (2021) “Heat Transfer in the Universal Form of High-rise Buildings in Various Climate Zones" Journal of Applied Science and Engineering 25(1): 187–194. DOI: 10.6180/jase.202202_25(1).0019.
  3. [3] M. T. Naqash, A. Formisano, and E. Noroozinejad Farsangi, (2022) “Using a Full-Scale Mock-Up of Skylight to Evaluate Its Performance Following Standards Criteria" Arabian Journal for Science and Engineering 47(10): 13407–13420. DOI: 10.1007/s13369-022-06817-2.
  4. [4] M. T. Naqash, A. Formisano, and E. N. Farsangi. “Structural assessment of glass used in façade industry”. In: Structures. 33. Elsevier. 2021, 4817–4827. DOI: 10.1016/j.istruc.2021.07.059.
  5. [5] A. Standard. ASTM E1300 Standard Practice for Determining Load Resistance of Glass in Buildings. 2012.
  6. [6] U. Knaack and T. Klein, (2013) “Journal of Facade Design and Engineering" Journal of Facade Design and Engineering 1(1-2): 1–1. DOI: 10.3233/fde-130008.
  7. [7] What’s the Difference Between U-Value and R-Value? URL: https: //glassed.vitroglazings.com/topics/thedifference-between-r-value-and-u-value.
  8. [8] Types of Architectural Glass. URL: https: //www.peerlessproducts.com/media/blog/what-glassshould-you-be-choosing-for-all-over-performanceand-aesthetics
  9. [9] S. W. Duda, (2012) “The challenge of low energy design in low energy cost states" ASHRAE Transactions 118(2): 269–276.
  10. [10] M. J. Hewett, V. D. Baxter, D. S. Borges, W. S. Clements, P. A. Domanski, R. A. Evans, J. F. Hogan, R. E. Jarnagin, D. E. Knebel, F. H. Kohloss, et al., (2001) “ASHRAE STANDARDS COMMITTEE 1999- 2000":
  11. [11] A. Standard, (1992) “Thermal environmental conditions for human occupancy" ANSI/ASHRAE, 55 5:
  12. [12] M. Vaughn, (2014) “2013-2014: ASHRAE research report" ASHRAE Journal 56(10): 89–99.
  13. [13] Saudi & Middle East Green Initiatives. URL: https: //www.greeninitiatives.gov.sa/gclid=CjwKCAjwhJukBhBPEiwAniIcNTibvSYgD1qhIkyZnkCXBPbGqQpDDRiL_nuECbSvbBQSBvCypSNCNRoCvR8QAvD_BwE
  14. [14] M. Gargallo, B. Cordero, and A. Garcia-Santos, (2021) “Material selection and characterization for a novel frameintegrated curtain wall" Materials 14(8): 1896. DOI: 10.3390/ma14081896.
  15. [15] B. Cordero, (2015) “Thermal performance of novel frameintegrated unitised curtain wall" Revista de la Construcción. Journal of Construction 14(1): 23–31. DOI: 10.4067/s0718-915x2015000100003.
  16. [16] J. Peng, D. C. Curcija, A. Thanachareonkit, E. S. Lee, H. Goudey, J. Jonsson, and S. E. Selkowitz, (2021) “Comparative study on the overall energy performance between photovoltaic and Low-E insulated glass units" Solar Energy 214: 443–456. DOI: 10.1016/j.solener.2020.12.006.
  17. [17] A. Aldawoud, (2013) “Conventional fixed shading devices in comparison to an electrochromic glazing system in hot, dry climate" Energy and Buildings 59: 104–110. DOI: 10.1016/j.enbuild.2012.12.031.
  18. [18] B. P. Jelle, S. E. Kalnæs, and T. Gao, (2015) “Lowemissivity materials for building applications: A state-ofthe-art review and future research perspectives" Energy and Buildings 96: 329–356. DOI: 10.1016/j.enbuild.2015.03.024.
  19. [19] E. Kamel and A. M. Memari, (2022) “Residential building envelope energy retrofit methods, simulation tools, and example projects: a review of the literature" Buildings 12(7): 954. DOI: 10.3390/buildings12070954.
  20. [20] E. Cuce, C.-H. Young, and S. B. Riffat, (2015) “Thermal performance investigation of heat insulation solar glass: A comparative experimental study" Energy and Buildings 86: 595–600. DOI: 10.1016/j.enbuild.2014.10.063.
  21. [21] E. Cuce and S. B. Riffat, (2015) “A state-of-the-art review on innovative glazing technologies" Renewable and sustainable energy reviews 41: 695–714. DOI: 10.1016/j.rser.2014.08.084.
  22. [22] J. Wang, L. O. Beltrán, and J. Kim. “From static to kinetic: A review of acclimated kinetic building envelopes”. In: Proceedings of the solar conference. 5. 2012, 4022–2029.
  23. [23] S. A. Moghaddam, C. Serra, M. Gameiro da Silva, and N. Simões, (2023) “Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, CostEffectiveness, and Environmental Impact Perspectives" Energies 16(17): 6283. DOI: 10.3390/en16176283.
  24. [24] C. T. Do and Y.-C. Chan, (2021) “Daylighting performance analysis of a facade combining daylight-redirecting window film and automated roller shade" Building and Environment 191: 107596. DOI: 10.1016/j.buildenv.2021.107596.
  25. [25] C. Garlisi, E. Trepci, X. Li, R. Al Sakkaf, K. Al-Ali, R. P. Nogueira, L. Zheng, E. Azar, and G. Palmisano, (2020) “Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energysaving properties" Applied energy 264: 114697. DOI: 10.1016/j.apenergy.2020.114697.
  26. [26] A. Piccolo, M. Prestipino, M. F. Panzera, and R. Baccoli, (2023) “Study of the Correlation among Luminous Properties of Smart Glazing for Adaptive Energy Saving Buildings" Buildings 13(2): 337. DOI: 10.3390/buildings13020337.
  27. [27] E. Cuce, P. M. Cuce, and S. Riffat, (2016) “Novel glazing technologies to mitigate energy consumption in lowcarbon buildings: a comparative experimental investigation" International Journal of Energy Research 40(4): 537–549. DOI: 10.1002/er.3478.
  28. [28] M. T. Naqash, S. Khoso, and E. Noroozinejad Farsangi, (2024) “Wind-Induced Structural Response of Skylights: A Eurocode-Based Assessment" Practice Periodical on Structural Design and Construction 29(1): 04023062. DOI: 10.1061/PPSCFX.SCENG-1381.
  29. [29] V. Mendon, Z. Taylor, S. Rao, and Y. Xie. 2015 IECC: Energy Savings Analysis. Tech. rep. Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2015.
  30. [30] P. N. N. Laboratory. Factsheet: The revised Energy Performance of Buildings Directive (EPBD). 2018.
  31. [31] S. Goel and M. I. Rosenberg. ANSI/ASHRAE/IES Standard 90.1-2010 Performance Rating Method Reference Manual. Tech. rep. Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2016.
  32. [32] P. Torcelini, M. Deru, B. Griffith, K. Benne, M. Halverson, D. Winiarski, and D. B. Crawley. DOE commercial building benchmark models. Tech. rep. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2008.
  33. [33] R. American Society of Heating and A.-C. Engineers. ASHRAE STANDARD 55-2004. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2004.
  34. [34] A. ASHRAE, (2021) “ASHRAE Standard 62.1-2022. Ventilation and Acceptable Indoor Air Quality" American Society of Heating, Refrigerating, and AirConditioning Engineers, Inc.: Atlanta, GA:
  35. [35] O. G. Adekanye, A. Davis, and I. L. Azevedo, (2020) “Federal policy, local policy, and green building certifications in the US" Energy and Buildings 209: 109700. DOI: 10.1016/j.enbuild.2019.109700.
  36. [36] C. Ford, (2017) “Leadership in Energy and Environmental Design (LEED)" The Bloomsbury Encyclopedia of Design; Bloomsbury: London, UK: DOI: 10.5040/9781472596161-bed-l023.
  37. [37] How LEED works. URL: https://www.usgbc.org/leed (visited on 2022).
  38. [38] R. Olu-Ajayi, H. Alaka, I. Sulaimon, F. Sunmola, and S. Ajayi, (2022) “Machine learning for energy performance prediction at the design stage of buildings" Energy for Sustainable Development 66: 12–25. DOI: 10.1016/j.esd.2021.11.002.
  39. [39] N. Asim, M. Badiei, M. Mohammad, H. Razali, A. Rajabi, L. Chin Haw, and M. Jameelah Ghazali, (2022) “Sustainability of heating, ventilation and air-conditioning (HVAC) systems in buildings—An overview" International journal of environmental research and public health 19(2): 1016. DOI: 10.3390/ijerph19021016.
  40. [40] F. Ellen, T. Luke, W. Mark, Y. Yunyang, N. Chitra, and L. Jeremy. Enhancing Resilience in Buildings Through Energy Efficiency Pacific Northwest National Laboratory. 2023.
  41. [41] S. Somasundaram, S. R. Thangavelu, and A. Chong, (2020) “Improving building efficiency using low-e coating based retrofit double glazing with solar films" Applied Thermal Engineering 171: 115064. DOI: 10.1016/j.applthermaleng.2020.115064.
  42. [42] Daylight | U.S. Green Building Council. URL: https: //www.usgbc.org/credits/healthcare/v4-draft/eqc0(visitedon2023)
  43. [43] Buildings - Energy System - IEA. URL: https: //www.iea.org/energy-system/buildings(visitedon2023).
  44. [44] Smart Buildings Market worth $121.6 billion by 2026 – Report by MarketsandMarketsTM. URL: https: //www.marketsandmarkets.com/PressReleases/smart-building.asp(visitedon2023)
  45. [45] Glazing Properties | Sustainability Workshop. URL: https: //sustainabilityworkshop.venturewell.org/node/993.html(visitedon2023)
  46. [46] I. ISO, (2003) “9050: Glass in Building-Determination of Light Transmittance, Solar Direct Transmittance, Total Solar Energy Transmittance, Ultraviolet Transmittance and Related Glazing Factors" International Organization for Standardization, Geneva:
  47. [47] M. T. Naqash, (2015) “Structural Design Proposal for the Le Boulevard Skylight Doha Qatar" International Journal of Advanced Structures and Geotechnical Engineering 4(2): 77–103.
  48. [48] U. J. Udi, M. M. Yussof, K. M. Ayagi, C. Bedon, and M. K. Kamarudin, (2023) “Environmental degradation of structural glass systems: A review of experimental research and main influencing parameters" Ain Shams Engineering Journal 14(5): 101970. DOI: 10.1016/j.asej.2022.101970.
  49. [49] C. Bedon, X. Zhang, F. Santos, D. Honfi, M. Kozłowski, M. Arrigoni, L. Figuli, and D. Lange, (2018) “Performance of structural glass facades under extreme loads–Design methods, existing research, current issues and trends" Construction and Building Materials 163: 921–937. DOI: 10.1016/j.conbuildmat.2017.12.153.
  50. [50] J. Savi´c, D. Ðuri´c-Mijovi´c, and V. Bogdanovi´c, (2013) “Architectural glass: Types, performance and legislation" Facta universitatis-series: Architecture and Civil Engineering 11(1): 35–45. DOI: 10.2298/fuace1301035s.
  51. [51] L. Wondraczek, E. Bouchbinder, A. Ehrlicher, J. C. Mauro, R. Sajzew, and M. M. Smedskjaer, (2022) “Advancing the mechanical performance of glasses: perspectives and challenges" Advanced Materials 34(14): 2109029. DOI: 10.1002/adma.202109029.
  52. [52] C. Louter, J. Belis, J. H. Nielsen, M. Overend, and J. Schneider, (2020) “Glass performance" Glass Structures & Engineering 5(1): 1–2. DOI: 10.1007/s40940-020-00117-7.
  53. [53] M. T. Naqash, (2019) “Design and fabrication of aluminum cladding and curtain wall of a sports club" Open Journal of Civil Engineering 9(1): 1–17. DOI: 10.4236/ojce.2019.91001.
  54. [54] M. T. Naqash, A. Formisano, and G. De Matteis, (2016) “Design and performance testing of a skylight in Qatar" Key Engineering Materials 710: 262–267. DOI: 10.4028/www.scientific.net/KEM.710.262.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.