- [1] W. Li, S. Shi, M. Chen, S. Shao, and Q. Wu, (2023) “Switching modeling and bumpless transfer tracking control for the conversion mode of tilt-rotor aircraft" Transactions of the Institute of Measurement and Control 45(11): 2103–2114. DOI: 10.1177/01423312221148523.
- [2] D. Mellinger and V. Kumar. “Minimum snap trajectory generation and control for quadrotors”. In: 2011 IEEE international conference on robotics and automation. 2011, 2520–2525. DOI: 10.1109/ICRA.2011.5980409.
- [3] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Galceran. “Continuous-time trajectory optimization for online uav replanning”. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). 2016, 5332–5339. DOI: 10.1109/IROS.2016.7759784.
- [4] V. Usenko, L. Von Stumberg, A. Pangercic, and D. Cremers. “Real-time trajectory replanning for MAVs using uniform B-splines and a 3D circular buffer”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017, 215–222. DOI: 10.1109/IROS.2017.8202160.
- [5] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, (2020) “Ego-planner: An esdf-free gradient-based local planner for quadrotors" IEEE Robotics and Automation Letters 6(2): 478–485. DOI: 10.1109/LRA.2020.3047728.
- [6] Z. Wang, X. Zhou, C. Xu, and F. Gao, (2022) “Geometrically constrained trajectory optimization for multicopters" IEEE Transactions on Robotics 38(5): 3259–3278. DOI: 10.1109/TRO.2022.3160022.
- [7] A. Bry, C. Richter, A. Bachrach, and N. Roy, (2015) “Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments" The International Journal of Robotics Research 34(7): 969–1002. DOI: 10.1177/0278364914558129.
- [8] C. Chen, J. Zhang, N. Wang, L. Shen, and Y. Li, (2021) “Conversion control of a tilt tri-rotor unmanned aerial vehicle with modeling uncertainty" International Journal of Advanced Robotic Systems 18(4): 17298814211027033. DOI: 10.1177/17298814211027033.
- [9] G. Nugroho, Y. D. Hutagaol, and G. Zuliardiansyah, (2022) “Aerodynamic Performance Analysis of VTOL Arm Configurations of a VTOL Plane UAV Using a Computational Fluid Dynamics Simulation" Drones 6(12): 392. DOI: 10.3390/drones6120392.
- [10] S. Panigrahi, Y. S. S. Krishna, and A. Thondiyath, (2021) “Design, analysis, and testing of a hybrid vtol tiltrotor uav for increased endurance" Sensors 21(18): 5987. DOI: 10.3390/s21185987.
- [11] Z. Liu, Y. He, L. Yang, and J. Han, (2017) “Control techniques of tilt rotor unmanned aerial vehicle systems: A review" Chinese Journal of Aeronautics 30(1): 135– 148. DOI: 10.1016/j.cja.2016.11.001.
- [12] M. Hassanalian, R. Salazar, and A. Abdelkefi, (2019) “Conceptual design and optimization of a tilt-rotor micro air vehicle" Chinese Journal of Aeronautics 32(2): 369–381. DOI: 10.1016/j.cja.2018.10.006.
- [13] H. Wang, W. Sun, C. Zhao, S. Zhang, and J. Han, (2022) “Dynamic Modeling and Control for Tilt-Rotor UAV Based on 3D Flow Field Transient CFD" Drones 6(11): 338. DOI: 10.3390/drones6110338.
- [14] C. Chen, J. Zhang, D. Zhang, and L. Shen, (2017) “Control and flight test of a tilt-rotor unmanned aerial vehicle" International Journal of Advanced Robotic Systems 14(1): 1729881416678141. DOI: 10.1177/1729881416678141.
- [15] N. El Gmili, M. Mjahed, A. El Kari, and H. Ayad, (2020) “Particle swarm optimization based proportionalderivative parameters for unmanned tilt-rotor flight control and trajectory tracking" Automatika 61(2): 189– 206. DOI: 10.1080/00051144.2019.1698191.
- [16] L. Bauersfeld, L. Spannagl, G. J. Ducard, and C. H. Onder, (2021) “MPC flight control for a tilt-rotor VTOL aircraft" IEEE Transactions on Aerospace and Electronic Systems 57(4): 2395–2409. DOI: 10.1109/TAES.2021.3061819.
- [17] Z. Yu, J. Zhang, and X. Wang, (2023) “Thrust Vectoring Control of a Novel Tilt-Rotor UAV Based on Backstepping Sliding Model Method" Sensors 23(2): 574. DOI: 10.3390/s23020574.
- [18] S. Elanchezhian et al., (2023) “Software In-Loop Simulation of a Quad Tilt Rotor Unmanned Aerial Vehicle for Transition Control" Transactions of FAMENA 47(1): 21–36. DOI: 10.21278/TOF.471033221.
- [19] H. Yang, W. Xia, K. Wang, and S. Hu, (2023) “Aerodynamic performance of a small-scale tilt rotor: Numerical simulation and experiment in steady state" Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 237(18): 4141–4150. DOI: 10.1177/0954406220950352.
- [20] H. Cakir and D. F. Kurtulu¸s, (2022) “Design and aerodynamic analysis of a VTOL tilt-wing UAV" Turkish Journal of Electrical Engineering and Computer Sciences 30(3): 767–784. DOI: 10.3906/ELK-2105-59.
- [21] K. Chen, Z. Shi, S. Tong, Y. Dong, and J. Chen, (2019) “Aerodynamic interference test of quad tilt rotor aircraft in wind tunnel" Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233(15): 5553–5566. DOI: 10.1177/0954410019852827.
- [22] G. Wen, D. Wu, H. Yin, and D. Zhang, (2020) “Coupled CFD/MBD Method for a Tilt Tri-rotor UAV in Conversion of Flight Modes" International Journal of Computational Fluid Dynamics 34(5): 363–379. DOI: 10.1080/10618562.2020.1778169.
- [23] A. Prach and E. Kayacan, (2018) “An MPC-based position controller for a tilt-rotor tricopter VTOL UAV" Optimal control applications and methods 39(1): 343–356. DOI: 10.1002/oca.2350.
- [24] B. Wang Dong.;Xian, (2020) “Adaptive robust fault tolerant control of the tilt tri-rotor unmanned aerial vehicle" Control Theory & Applications 37(4): 784–792. DOI: 10.7641/CTA.2019.90172.
- [25] R. Fu, H. Sun, and J. Zeng, (2019) “Exponential stabilisation of nonlinear parameter-varying systems with applications to conversion flight control of a tilt rotor aircraft" International Journal of Control 92(11): 2473– 2483. DOI: 10.1080/00207179.2018.1442022.
- [26] N. El Gmili, M. Mjahed, A. El Kari, and H. Ayad, (2020) “Particle swarm optimization based proportionalderivative parameters for unmanned tilt-rotor flight control and trajectory tracking" Automatika 61(2): 189– 206. DOI: 10.1080/00051144.2019.1698191.
- [27] B. Xian and W. Hao, (2019) “Nonlinear robust faulttolerant control of the tilt trirotor UAV under rear servo’s stuck fault: Theory and experiments" IEEE Transactions on Industrial Informatics 15(4): 2158–2166. DOI: 10.1109/TII.2018.2858143.
- [28] K. Lu, Z. Yang, Q. Zhang, C. Xu, H. Xu, and X. Xu, (2020) “Active disturbance rejection flight control method for thrust-vectored quadrotor with tiltable rotors" Control Theory & Applications 37(6): 1377–1387. DOI: 10.7641/CTA.2019.90305.
- [29] N. T. Hegde, V. George, C. G. Nayak, and K. Kumar, (2020) “Transition flight modeling and robust control of a VTOL unmanned quad tilt-rotor aerial vehicle" Indonesian Journal of Electrical Engineering and Computer Science 18(3): 1252–1261. DOI: 10.11591/ijeecs.v18.i3.
- [30] Y. Xufei and C. Renliang, (2019) “Augmented flight dynamics model for pilot workload evaluation in tilt-rotor aircraft optimal landing procedure after one engine failure" Chinese Journal of Aeronautics 32(1): 92–103. DOI: 10.1016/j.cja.2018.06.010.
- [31] A. Houari, I. Bachir, D. K. Mohamed, and M. KaraMohamed, (2020) “PID vs LQR controller for tilt rotor airplane" International Journal of Electrical and Computer Engineering (IJECE) 10(6): 6309–6318. DOI: 10.11591/ijece.v10i6.pp6309-6318.
- [32] N. T. Hegde, V. George, C. G. Nayak, and K. Kumar, (2019) “Design, dynamic modelling and control of tilt-rotor UAVs: a review" International Journal of Intelligent Unmanned Systems 8(3): 143–161. DOI: 10.1108/IJIUS-01-2019-0001.
- [33] Y. Cao, Q. Zhao, Y. Ye, and Y. Xiong, (2019) “ADRCbased current control for grid-tied inverters: Design, analysis, and verification" IEEE transactions on industrial electronics 67(10): 8428–8437. DOI: 10.1109/TIE.2019.2949513.
- [34] T. He, Z. Wu, D. Li, and J. Wang, (2019) “A tuning method of active disturbance rejection control for a class of high-order processes" IEEE Transactions on Industrial Electronics 67(4): 3191–3201. DOI: 10.1109/TIE.2019.2908592.