Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Liben Yang1This email address is being protected from spambots. You need JavaScript enabled to view it., Yunfei Xu1, Jianwen Tian2, and Dong Wang3

1School of Unmanned Aerial Vehicles , Chengdu Aeronautic Polytechnic, Chengdu ,Sichuan 610100, China

2School of Automation & Electrical Engineering , Lanzhou Jiaotong University, Lanzhou,Gansu 710070, China

3510 Research Institute of the Fifth Research Institute of China Aerospace Science and Technology Group, Lanzhou,Gansu 730000, China


 

 

Received: November 7, 2023
Accepted: February 25, 2024
Publication Date: March 23, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202501_28(1).0007  


The tilt-rotor aircraft is capable of both low-speed hovering and high-speed flight, which has a larger flight envelope. Due to the coupling between the dynamic characteristics of its rotor and the aerodynamic characteristics of its fixed wing, the anti-disturbance ability of tilt-rotor aircraft is weak, the control system is complex, and its autonomous flight ability is low. As a result, it is difficult to achieve autonomous flight in complex and dense environment. The autonomous flight ability is critical to the measurement of the intelligence level of unmanned aerial vehicles (UAVs), which is the basis for UAVs to perform complex tasks. This paper proposes an autonomous motion planning and anti-wind disturbance control algorithm for the tilt-rotor aircraft, which can realize the autonomous flight of a single aircraft in a complex and dense environment, achieve real-time perception and avoidance of static and dynamic obstacles, perform estimation and compensation of wind disturbance when there is disturbance in the wind field, and realize complete autonomous motion planning and trajectory tracking of tilt-rotor aircraft in a complex and dense environment. Our work can provide a basis for the collaborative control of multiple tilt-rotor aircrafts.


Keywords: Tilt rotor aircraft; Complex and dense environment; Decoupling control; Path optimization; Wind disturbance estimation


  1. [1] W. Li, S. Shi, M. Chen, S. Shao, and Q. Wu, (2023) “Switching modeling and bumpless transfer tracking control for the conversion mode of tilt-rotor aircraft" Transactions of the Institute of Measurement and Control 45(11): 2103–2114. DOI: 10.1177/01423312221148523.
  2. [2] D. Mellinger and V. Kumar. “Minimum snap trajectory generation and control for quadrotors”. In: 2011 IEEE international conference on robotics and automation. 2011, 2520–2525. DOI: 10.1109/ICRA.2011.5980409.
  3. [3] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Galceran. “Continuous-time trajectory optimization for online uav replanning”. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). 2016, 5332–5339. DOI: 10.1109/IROS.2016.7759784.
  4. [4] V. Usenko, L. Von Stumberg, A. Pangercic, and D. Cremers. “Real-time trajectory replanning for MAVs using uniform B-splines and a 3D circular buffer”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017, 215–222. DOI: 10.1109/IROS.2017.8202160.
  5. [5] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, (2020) “Ego-planner: An esdf-free gradient-based local planner for quadrotors" IEEE Robotics and Automation Letters 6(2): 478–485. DOI: 10.1109/LRA.2020.3047728.
  6. [6] Z. Wang, X. Zhou, C. Xu, and F. Gao, (2022) “Geometrically constrained trajectory optimization for multicopters" IEEE Transactions on Robotics 38(5): 3259–3278. DOI: 10.1109/TRO.2022.3160022.
  7. [7] A. Bry, C. Richter, A. Bachrach, and N. Roy, (2015) “Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments" The International Journal of Robotics Research 34(7): 969–1002. DOI: 10.1177/0278364914558129.
  8. [8] C. Chen, J. Zhang, N. Wang, L. Shen, and Y. Li, (2021) “Conversion control of a tilt tri-rotor unmanned aerial vehicle with modeling uncertainty" International Journal of Advanced Robotic Systems 18(4): 17298814211027033. DOI: 10.1177/17298814211027033.
  9. [9] G. Nugroho, Y. D. Hutagaol, and G. Zuliardiansyah, (2022) “Aerodynamic Performance Analysis of VTOL Arm Configurations of a VTOL Plane UAV Using a Computational Fluid Dynamics Simulation" Drones 6(12): 392. DOI: 10.3390/drones6120392.
  10. [10] S. Panigrahi, Y. S. S. Krishna, and A. Thondiyath, (2021) “Design, analysis, and testing of a hybrid vtol tiltrotor uav for increased endurance" Sensors 21(18): 5987. DOI: 10.3390/s21185987.
  11. [11] Z. Liu, Y. He, L. Yang, and J. Han, (2017) “Control techniques of tilt rotor unmanned aerial vehicle systems: A review" Chinese Journal of Aeronautics 30(1): 135– 148. DOI: 10.1016/j.cja.2016.11.001.
  12. [12] M. Hassanalian, R. Salazar, and A. Abdelkefi, (2019) “Conceptual design and optimization of a tilt-rotor micro air vehicle" Chinese Journal of Aeronautics 32(2): 369–381. DOI: 10.1016/j.cja.2018.10.006.
  13. [13] H. Wang, W. Sun, C. Zhao, S. Zhang, and J. Han, (2022) “Dynamic Modeling and Control for Tilt-Rotor UAV Based on 3D Flow Field Transient CFD" Drones 6(11): 338. DOI: 10.3390/drones6110338.
  14. [14] C. Chen, J. Zhang, D. Zhang, and L. Shen, (2017) “Control and flight test of a tilt-rotor unmanned aerial vehicle" International Journal of Advanced Robotic Systems 14(1): 1729881416678141. DOI: 10.1177/1729881416678141.
  15. [15] N. El Gmili, M. Mjahed, A. El Kari, and H. Ayad, (2020) “Particle swarm optimization based proportionalderivative parameters for unmanned tilt-rotor flight control and trajectory tracking" Automatika 61(2): 189– 206. DOI: 10.1080/00051144.2019.1698191.
  16. [16] L. Bauersfeld, L. Spannagl, G. J. Ducard, and C. H. Onder, (2021) “MPC flight control for a tilt-rotor VTOL aircraft" IEEE Transactions on Aerospace and Electronic Systems 57(4): 2395–2409. DOI: 10.1109/TAES.2021.3061819.
  17. [17] Z. Yu, J. Zhang, and X. Wang, (2023) “Thrust Vectoring Control of a Novel Tilt-Rotor UAV Based on Backstepping Sliding Model Method" Sensors 23(2): 574. DOI: 10.3390/s23020574.
  18. [18] S. Elanchezhian et al., (2023) “Software In-Loop Simulation of a Quad Tilt Rotor Unmanned Aerial Vehicle for Transition Control" Transactions of FAMENA 47(1): 21–36. DOI: 10.21278/TOF.471033221.
  19. [19] H. Yang, W. Xia, K. Wang, and S. Hu, (2023) “Aerodynamic performance of a small-scale tilt rotor: Numerical simulation and experiment in steady state" Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 237(18): 4141–4150. DOI: 10.1177/0954406220950352.
  20. [20] H. Cakir and D. F. Kurtulu¸s, (2022) “Design and aerodynamic analysis of a VTOL tilt-wing UAV" Turkish Journal of Electrical Engineering and Computer Sciences 30(3): 767–784. DOI: 10.3906/ELK-2105-59.
  21. [21] K. Chen, Z. Shi, S. Tong, Y. Dong, and J. Chen, (2019) “Aerodynamic interference test of quad tilt rotor aircraft in wind tunnel" Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233(15): 5553–5566. DOI: 10.1177/0954410019852827.
  22. [22] G. Wen, D. Wu, H. Yin, and D. Zhang, (2020) “Coupled CFD/MBD Method for a Tilt Tri-rotor UAV in Conversion of Flight Modes" International Journal of Computational Fluid Dynamics 34(5): 363–379. DOI: 10.1080/10618562.2020.1778169.
  23. [23] A. Prach and E. Kayacan, (2018) “An MPC-based position controller for a tilt-rotor tricopter VTOL UAV" Optimal control applications and methods 39(1): 343–356. DOI: 10.1002/oca.2350.
  24. [24] B. Wang Dong.;Xian, (2020) “Adaptive robust fault tolerant control of the tilt tri-rotor unmanned aerial vehicle" Control Theory & Applications 37(4): 784–792. DOI: 10.7641/CTA.2019.90172.
  25. [25] R. Fu, H. Sun, and J. Zeng, (2019) “Exponential stabilisation of nonlinear parameter-varying systems with applications to conversion flight control of a tilt rotor aircraft" International Journal of Control 92(11): 2473– 2483. DOI: 10.1080/00207179.2018.1442022.
  26. [26] N. El Gmili, M. Mjahed, A. El Kari, and H. Ayad, (2020) “Particle swarm optimization based proportionalderivative parameters for unmanned tilt-rotor flight control and trajectory tracking" Automatika 61(2): 189– 206. DOI: 10.1080/00051144.2019.1698191.
  27. [27] B. Xian and W. Hao, (2019) “Nonlinear robust faulttolerant control of the tilt trirotor UAV under rear servo’s stuck fault: Theory and experiments" IEEE Transactions on Industrial Informatics 15(4): 2158–2166. DOI: 10.1109/TII.2018.2858143.
  28. [28] K. Lu, Z. Yang, Q. Zhang, C. Xu, H. Xu, and X. Xu, (2020) “Active disturbance rejection flight control method for thrust-vectored quadrotor with tiltable rotors" Control Theory & Applications 37(6): 1377–1387. DOI: 10.7641/CTA.2019.90305.
  29. [29] N. T. Hegde, V. George, C. G. Nayak, and K. Kumar, (2020) “Transition flight modeling and robust control of a VTOL unmanned quad tilt-rotor aerial vehicle" Indonesian Journal of Electrical Engineering and Computer Science 18(3): 1252–1261. DOI: 10.11591/ijeecs.v18.i3.
  30. [30] Y. Xufei and C. Renliang, (2019) “Augmented flight dynamics model for pilot workload evaluation in tilt-rotor aircraft optimal landing procedure after one engine failure" Chinese Journal of Aeronautics 32(1): 92–103. DOI: 10.1016/j.cja.2018.06.010.
  31. [31] A. Houari, I. Bachir, D. K. Mohamed, and M. KaraMohamed, (2020) “PID vs LQR controller for tilt rotor airplane" International Journal of Electrical and Computer Engineering (IJECE) 10(6): 6309–6318. DOI: 10.11591/ijece.v10i6.pp6309-6318.
  32. [32] N. T. Hegde, V. George, C. G. Nayak, and K. Kumar, (2019) “Design, dynamic modelling and control of tilt-rotor UAVs: a review" International Journal of Intelligent Unmanned Systems 8(3): 143–161. DOI: 10.1108/IJIUS-01-2019-0001.
  33. [33] Y. Cao, Q. Zhao, Y. Ye, and Y. Xiong, (2019) “ADRCbased current control for grid-tied inverters: Design, analysis, and verification" IEEE transactions on industrial electronics 67(10): 8428–8437. DOI: 10.1109/TIE.2019.2949513.
  34. [34] T. He, Z. Wu, D. Li, and J. Wang, (2019) “A tuning method of active disturbance rejection control for a class of high-order processes" IEEE Transactions on Industrial Electronics 67(4): 3191–3201. DOI: 10.1109/TIE.2019.2908592.