- [1] N. Cheemaa, A. R. Seadawy, and S. Chen, (2019) “Some new families of solitary wave solutions of the generalized Schamel equation and their applications in plasma physics" The European Physical Journal Plus 134: 117. DOI: 10.1140/epjp/i2019-12467-7.
- [2] D. Kumar, A. R. Seadawy, and M. R. Haque, (2018) “Multiple soliton solutions of the nonlinear partial differential equations describing the wave propagation in nonlinear low–pass electrical transmission lines" Chaos, Solitons Fractals 115: 62–76. DOI: 10.1016/j.chaos.2018.08.016.
- [3] A. Goswami, J. Singh, D. Kumar, and S. Gupta, (2019) “An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma" Journal of Ocean Engineering and Science 4: 85–99. DOI: 10.1016/j.joes.2019.01.003.
- [4] A. Ara, N. A. Khan, O. A. Razzaq, T. Hameed, and M. A. Z. Raja, (2018) “Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling" Advances in Difference Equations 2018: 1–13. DOI: 10.1186/s13662-017-1461-2.
- [5] J. Berg and K. Nyström, (2018) “A unified deep artificial neural network approach to partial differential equations in complex geometries" Neurocomputing 317: 28–41. DOI: 10.1016/j.neucom.2018.06.056.
- [6] H. Dehestani, Y. Ordokhani, and M. Razzaghi, (2018) “Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations" Applied Mathematics and Computation 336: 433– 453. DOI: 10.1016/j.amc.2018.05.017.
- [7] K. M. Owolabi, A. Atangana, and A. Akgul, (2020) “Modelling and analysis of fractal-fractional partial differential equations: application to reaction-diffusion model" Alexandria Engineering Journal 59: 2477–2490. DOI: 10.1016/j.aej.2020.03.022.
- [8] Q. Pan, T. Rabczuk, and X. Yang, (2021) “Subdivisionbased isogeometric analysis for second order partial differential equations on surfaces" Computational Mechanics 68: 1205–1221. DOI: 10.1007/s00466-021-02065-7.
- [9] M. Senol, (2020) “New analytical solutions of fractional symmetric regularized-long-wave equation" Re- vista mexicana de física 66: 297–307. DOI: 10.31349/revmexfis.66.297.
- [10] K. S. Nisar, L. Akinyemi, M. Inc, M. ¸Senol, M. Mirzazadeh, A. Houwe, S. Abbagari, and H. Rezazadeh, (2022) “New perturbed conformable Boussinesq-like equation: Soliton and other solutions" Results in Physics 33: 105200. DOI: 10.1016/j.rinp.2022.105200.
- [11] M. Inc, A. Houwe, and H. Bicer, (2021) “Ellipticity angle effect on exact optical solitons and modulation instability in birefringent fiber" Optical and Quantum Electronics 53: 1–18. DOI: 10.1007/s11082-021-03297-w.
- [12] N. M. Rasheed, M. O. Al-Amr, E. A. Az-Zo’bi, M. A. Tashtoush, and L. Akinyemi, (2021) “Stable optical solitons for the Higher-order Non-Kerr NLSE via the modified simple equation method" Mathematics 9: 1986. DOI: 10.3390/math9161986.
- [13] M. Kaplan, A. Akbulut, and N. Raza, (2022) “Research on sensitivity analysis and traveling wave solutions of the (4+ 1)-dimensional nonlinear Fokas equation via three different techniques" Physica Scripta 97: 015203. DOI: 10.1088/1402-4896/ac42eb.
- [14] G. Yel, T. A. Sulaiman, and H. M. Baskonus, (2020) “On the complex solutions to the (3+ 1)-dimensional conformable fractional modified KdV–Zakharov–Kuznetsov equation" Modern Physics Letters B 34: 2050069. DOI: 10.1142/S0217984920500694.
- [15] B. Ghanbari and M. Inc, (2018) “A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation" The European Physical Journal Plus 133: 142. DOI: 10.1140/epjp/i2018-11984-1.
- [16] B. Ghanbari and D. Baleanu, (2019) “A novel technique to construct exact solutions for nonlinear partial differential equations" The European Physical Journal Plus 134: 506. DOI: 10.1140/epjp/i2019-13037-9.
- [17] A. Houwe, S. Abbagari, Y. Salathiel, M. Inc, S. Y. Doka, K. T. Crepin, and D. Baleanu, (2020) “Complex traveling-wave and solitons solutions to the Klein-GordonZakharov equations" Results in Physics 17: 103127. DOI: 10.1016/j.rinp.2020.103127.
- [18] M. A. Kayum, S. Ara, M. S. Osman, M. A. Akbar, and K. A. Gepreel, (2021) “Onset of the broad-ranging general stable soliton solutions of nonlinear equations in physics and gas dynamics" Results in Physics 20: 103762. DOI: 10.1016/j.rinp.2020.103762.
- [19] E. H. M. Zahran, M. S. M. Shehata, S. M. MirhosseiniAlizamini, M. N. Alam, and L. Akinyemi, (2021) “Exact propagation of the isolated waves model described by the three coupled nonlinear Maccari’s system with complex structure" International Journal of Modern Physics B 35: 2150193. DOI: 10.1142 / S0217979221501939.
- [20] M. Khater, A.-H. Abdel-Aty, G. Alnemer, M. Zakarya, and D. Lu, (2020) “New optical explicit plethora of the resonant Schrodinger’s equation via two recent computational schemes" Thermal Science 24: 247–255.
- [21] A. Akbulut, M. S. Hashemi, and H. Rezazadeh, (2021) “New conservation laws and exact solutions of coupled Burgers’ equation" Waves in Random and Complex Media: 1–20. DOI: 10.1080/17455030.2021.1979691.
- [22] D. Kumar, M. Kaplan, M. R. Haque, M. S. Osman, and D. Baleanu, (2020) “A variety of novel exact solutions for different models with the conformable derivative in shallow water" Frontiers in Physics 8: 177. DOI: 10.3389/fphy.2020.00177.
- [23] H. A. Ghany, A.-A. Hyder, and M. Zakarya, (2020) “Exact solutions of stochastic fractional Korteweg de–Vries equation with conformable derivatives" Chinese Physics B 29: 030203. DOI: 10.1088/1674-1056/ab75c9.
- [24] A. Biswas, M. Mirzazadeh, M. Savescu, D. Milovic, K. R. Khan, M. F. Mahmood, and M. Belic, (2014) “Singular solitons in optical metamaterials by ansatz method and simplest equation approach" Journal of Modern Optics 61: 1550–1555. DOI: 10.1080/09500340.2014.944357.
- [25] A. Biswas, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, S. P. Moshokoa, and M. Belic, (2018) “Optical solitons having weak non-local nonlinearity by two integration schemes" Optik 164: 380–384. DOI: 10.1016/j.ijleo.2018.03.026.
- [26] M. Mirzazadeh, M. Ekici, A. Sonmezoglu, S. Ortakaya, M. Eslami, and A. Biswas, (2016) “Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics" The European Physical Journal Plus 131: 1–11. DOI: 10.1140/epjp/i2016-16166-7.
- [27] H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh, and Q. Zhou, (2018) “New exact solutions of nonlinear conformable time-fractional Phi-4 equation" Chinese Journal of Physics 56: 2805–2816. DOI: 10.1016/j.cjph.2018.08.001.
- [28] K. Hosseini, M. Mirzazadeh, D. Baleanu, S. Salahshour, and L. Akinyemi, (2022) “Optical solitons of a high-order nonlinear Schrödinger equation involving nonlinear dispersions and Kerr effect" Optical and Quantum Electronics 54: 177. DOI: 10.1007/s11082-022-03522-0.
- [29] L. Akinyemi, M. ¸Senol, and O. S. Iyiola, (2021) “Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method" Mathematics and Computers in Simulation 182: 211–233. DOI: 10.1016/j.matcom.2020.10.017.
- [30] M. T. Darvishi, M. Najafi, L. Akinyemi, and H. Rezazadeh, (2023) “Gaussons of some new nonlinear logarithmic equations" Journal of Nonlinear Optical Physics Materials 32: 2350013. DOI: 10.1142/S0218863523500133.
- [31] A. Houwe, S. Abbagari, L. Akinyemi, H. Rezazadeh, and S. Y. Doka, (2023) “Peculiar optical solitons and modulated waves patterns in anti-cubic nonlinear media with cubic–quintic nonlinearity" Optical and Quantum Electronics 55: 719. DOI: 10.1007/s11082-023-04950-2.
- [32] A. R. Adem, B. P. Ntsime, A. Biswas, S. Khan, A. K. Alzahrani, and M. R. Belic, (2021) “Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian-Daniel model having Kerr law of nonlinear refractive index." Ukrainian Journal of Physical Optics 22: DOI: 10.3116/16091833/22/2/83/2021.
- [33] E. Zayed, R. Shohib, M. Alngar, A. Biswas, M. Ekici, S. Khan, A. Alzahrani, and M. Belic, (2021) “Optical solitons and conservation laws associated with Kudryashov’s sextic power-law nonlinearity of refractive index" Ukrainian Journal of Physical Optics 22: DOI: 10.3116/16091833/22/1/38/2021.
- [34] A. Biswas, J. Edoki, P. Guggilla, S. Khan, A. Alzahrani, and M. R. Belic, (2021) “Cubic-quartic optical soliton perturbation with lakshmanan-porsezian-daniel model by semi-inverse variational principle" Ukrainian Journal of Physical Optics 22: 123–127. DOI: 10.3116/16091833/22/3/123/2021.
- [35] Y. Yıldırım, A. Biswas, P. Guggilla, S. Khan, H. M. Alshehri, and M. R. Belic, (2021) “Optical solitons in fibre Bragg gratings with third-and fourth-order dispersive reflectivities" Ukrainian Journal of Physical Optics 22: 239–254. DOI: 10.3116/16091833/22/4/239/2021.
- [36] Y. Yildrim, A. Biswas, A. Dakova, P. Guggilla, S. Khan, H. M. Alshehri, and M. R. Belic, (2021) “Cubic– quartic optical solitons having quadratic–cubic nonlinearity by sine–Gordon equation approach." Ukrainian Journal of Physical Optics 22: DOI: 10.3116/16091833/22/4/255/2021.
- [37] E. M. E. Zayed, R. Shohib, M. E. M. Alngar, A. Biswas, Y. Yıldırım, A. Dakova, H. M. Alshehri, and M. R. Belic, (2022) “Optical solitons in the Sasa-Satsuma model with multiplicative noise via Itô calculus." Ukrainian Journal of Physical Optics 23: 9–14. DOI: 10.3116/16091833/23/1/9/2022.
- [38] Y. Yıldırım, A. Biswas, S. Khan, M. F. Mahmood, and H. M. Alshehri, (2022) “Highly dispersive optical soliton perturbation with Kudryashov’s sextic-power law of nonlinear refractive index." Ukrainian Journal of Physical Optics 23: 24–29. DOI: 10.3116/16091833/23/1/24/2022.
- [39] O. González-Gaxiola, A. Biswas, Y. Yildirim, and H. M. Alshehri, (2022) “Highly dispersive optical solitons in birefringent fibres with non) local form of nonlinear refractive index: Laplace–Adomian decomposition." Ukrainian Journal of Physical Optics 23: DOI: 10.3116/16091833/23/2/68/2022.
- [40] A. Q. AA, B. AM, M. ASHF, A. AA, and B. HO, (2023) “Dark and singular cubic–quartic optical solitons with Lakshmanan–Porsezian–Daniel equation by the improved Adomian decomposition scheme." Ukrainian Journal of Physical Optics 24: DOI: 10.3116/16091833/24/1/46/2023.
- [41] A. H. Arnous, A. Biswas, Y. Yıldırım, L. Moraru, M. Aphane, S. P. Moshokoa, and H. M. Alshehri, (2023) “Quiescent optical solitons with Kudryashov’s generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion: generalized temporal evolution." Ukrainian Journal of Physical Optics 24: 105–113. DOI: 10.3116/16091833/24/2/105/2023.
- [42] A. Kukkar, S. Kumar, S. Malik, A. Biswas, Y. Yıldırım, S. P. Moshokoa, S. Khan, and A. A. Alghamdi, (2023) “Optical solitons for the concatenation model with Kurdryashov’s approaches." Ukrainian Journal of Physical Optics 24: 155–160. DOI: 10.3116/16091833/24/2/155/2023.
- [43] A. Biswas, J. M. Vega-Guzmán, Y. Yildirim, S. P. Moshokoa, M. Aphane, and A. A. Alghamdi, (2023) “Optical solitons for the concatenation model with powerlaw nonlinearity: undetermined coefficients." Ukrainian Journal of Physical Optics 24: 185–192. DOI: 10.3116/16091833/24/3/185/2023.
- [44] O. González-Gaxiola, A. Biswas, J. R. de Chavez, and A. Asiri, (2023) “Bright and dark optical solitons for the concatenation model by the Laplace-Adomian decomposition scheme." Ukrainian Journal of Physical Optics 24: 222–234. DOI: 10.3116/16091833/24/3/222/2023.
- [45] R. Kumar, R. Kumar, A. Bansal, A. Biswas, Y. Yildirim, S. Moshokoa, and A. A. Asiri, (2023) “Optical solitons and group invariants for Chen-Lee-Liu equation with timedependent chromatic dispersion and nonlinearity by Lie symmetry" Ukrainian Journal of Physical Optics 24: 4021–4029. DOI: 10.3116/16091833/24/4/04021/2023.
- [46] Z. Elsayed, R. Shohib, A. Biswas, Y. Yildirim, M. Aphane, S. Moshokoa, S. Khan, and A. Asiri, (2023) “Gap solitons with cubic-quartic dispersive reflectivity and parabolic law of nonlinear refractive index" Ukrainian Journal of Physical Optics 24: 4030–4045. DOI: 10.3116/16091833/24/4/04030/2023.
- [47] F. Demontis, (2011) “Exact solutions of the modified Korteweg-de Vries equation" Theoretical and Mathematical Physics 168: 886–897. DOI: 10.1007/s11232-011-0072-4.
- [48] K. P. Das and F. Verheest, (1989) “Ion-acoustic solitons in magnetized multi-component plasmas including negative ions" Journal of plasma physics 41: 139–155. DOI: 10.1017/S0022377800013726.
- [49] S. Sahoo, G. Garai, and S. S. Ray, (2017) “Lie symmetry analysis for similarity reduction and exact solutions of modified KdV–Zakharov–Kuznetsov equation" Nonlinear Dynamics 87: 1995–2000. DOI: 10.1007/s11071-016-3169-3.
- [50] M. Eslami, H. Rezazadeh, M. Rezazadeh, and S. S. Mosavi, (2017) “Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space–time modified KDV–Zakharov–Kuznetsov equation" Optical and Quantum Electronics 49: 1–15. DOI: 10.1007/s11082-017-1112-6.
- [51] K. Khan and M. A. Akbar, (2013) “Exact and solitary wave solutions for the Tzitzeica–Dodd–Bullough and the modified KdV–Zakharov–Kuznetsov equations using the modified simple equation method" Ain Shams Engineering Journal 4: 903–909. DOI: 10.1016/j.asej.2013.01.010.
- [52] K. S. Al-Ghafri and H. Rezazadeh, (2019) “Solitons and other solutions of (3+ 1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation" Applied Mathematics and Nonlinear Sciences 4: 289– 304. DOI: 10.2478/AMNS.2019.2.00026.
- [53] M. H. Islam, K. Khan, M. A. Akbar, and M. A. Salam, (2014) “Exact traveling wave solutions of modified KdV–Zakharov–Kuznetsov equation and viscous Burgers equation" SpringerPlus 3: 1–9. DOI: 10.1186/2193-1801-3-105.
- [54] D. Lu, A. R. Seadawy, M. Arshad, and J. Wang, (2017) “New solitary wave solutions of (3+ 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdVZakharov-Kuznetsov equations and their applications" Results in physics 7: 899–909. DOI: 10.1016/j.rinp.2017.02.002.
- [55] H. Rezazadeh, (2018) “New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity" Optik 167: 218–227. DOI: 10.1016/j.ijleo.2018.04.026.