Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Bo Yang1This email address is being protected from spambots. You need JavaScript enabled to view it., Zheng hua Tao2, and Wei Hong3

1Changzhou University, Changzhou City, 213164, China

2NARI Technology Development Co., Ltd, Nanjing City 211106, China

3Changzhou University, Changzhou City, 213164, China

Received: June 14, 2023
Accepted: September 22, 2023
Publication Date: November 8, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  

The electricity consumption in the smart grids consists of an uncertainty feature. Also, an unstable atmosphere situation causes photovoltaic (PV) generation will be undefined output. With both of these problems, the net demand power of consumers can’t be a specific value. On the other hand, using consumption patterns, the consumptions and generations could be predicted for improving the operation of the power system. This paper reports the results of the differential performance of probabilistic forecasting of the residential electricity consumption, PV power generation, and net demand related to smart buildings using the novel method of the Improved Deep Mixture Density Network (IDMDN). According to this, investigators used a strong Multi to Multi (M2M) mapping of the neural network model. They followed that they had used a kind of beta kernel to decrease the number of leakage issues. It is an attempt to generate random predictions by the method of end-to-end. It expressed a new performance of changed initiation and multiple procedures of educating to decrease or remove unsteady traits in the probabilistic problems of the beta kernel function. The results show good performance of the proposed method in comparison with other methods.

Keywords: Smart Buildings; Probabilistic forecasting; Photovoltaic; Net demand; Electricity consumption; Improved Deep Mixture Density Network

  1. [1] A. Ahmadpour, E. Mokaramian, and S. Anderson, (2021) “The effects of the renewable energies penetration on the surplus welfare under energy policy" Renewable Energy 164: 1171–1182. DOI: 10.1016/j.renene.2020.10.140.
  2. [2] D. Xia, S. Ba, and A. Ahmadpour, (2021) “Non– intrusive load disaggregation of smart home appliances using the IPPO algorithm and FHM model" Sustainable Cities and Society 67: 102731. DOI: 10.1016/j.scs.2021.102731.
  3. [3] R. H. Inman, H. T. Pedro, and C. F. Coimbra, (2013) “Solar forecasting methods for renewable energy integration" Progress in energy and combustion science 39(6): 535–576. DOI: 10.1016/j.pecs.2013.06.002.
  4. [4] E. Mokaramian, H. Shayeghi, F. Sedaghati, A. Safari, and H. H. Alhelou, (2021) “A CVaR-Robust-based multi-objective optimization model for energy hub considering uncertainty and E-fuel energy storage in energy and reserve markets" IEEE Access 9: 109447–109464. DOI: 10.1109/ACCESS.2021.3100336.
  5. [5] D. W. Van der Meer, J. Widén, and J. Munkhammar, (2018) “Review on probabilistic forecasting of photovoltaic power production and electricity consumption" Renewable and Sustainable Energy Reviews 81: 1484–1512. DOI: 10.1016/j.rser.2017.05.212.
  6. [6] E. Mokaramian, H. Shayeghi, F. Sedaghati, A. Safari, and H. H. Alhelou, (2022) “An optimal energy hub management integrated EVs and RES based on threestage model considering various uncertainties" IEEE Access 10: 17349–17365. DOI: 10.1109/ACCESS.2022.3146447.
  7. [7] E. Scolari, D. Torregrossa, J.-Y. Le Boudec, and M. Paolone. “Ultra-short-term prediction intervals of photovoltaic AC active power”. In: 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE. 2016, 1–8. DOI: 10.1109/PMAPS.2016.7764064.
  8. [8] Q. Ni, S. Zhuang, H. Sheng, G. Kang, and J. Xiao, (2017) “An ensemble prediction intervals approach for short-term PV power forecasting" Solar Energy 155: 1072–1083. DOI: 10.1016/j.solener.2017.07.052.
  9. [9] E. Scolari, F. Sossan, and M. Paolone, (2016) “Irradiance prediction intervals for PV stochastic generation in microgrid applications" Solar Energy 139: 116–129. DOI: 10.1016/j.solener.2016.09.030.
  10. [10] G. I. Nagy, G. Barta, S. Kazi, G. Borbély, and G. Simon, (2016) “GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach" International Journal of Forecasting 32(3): 1087–1093. DOI: 10.1016/j.ijforecast.2015.11.013.
  11. [11] M. J. Sanjari and H. Gooi, (2016) “Probabilistic forecast of PV power generation based on higher order Markov chain" IEEE Transactions on Power Systems 32(4): 2942–2952. DOI: 10.1109/TPWRS.2016.2616902.
  12. [12] H. Wang, H. Yi, J. Peng, G. Wang, Y. Liu, H. Jiang, and W. Liu, (2017) “Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network" Energy conversion and management 153: 409–422. DOI: 10.1016/j.enconman.2017.10.008.
  13. [13] A. Bracale, G. Carpinelli, and P. De Falco, (2016) “A probabilistic competitive ensemble method for short-term photovoltaic power forecasting" IEEE Transactions on Sustainable Energy 8(2): 551–560. DOI: 10.1109/TSTE.2016.2610523.
  14. [14] R. R. Appino, J. Á. G. Ordiano, R. Mikut, T. Faulwasser, and V. Hagenmeyer, (2018) “On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages" Applied energy 210: 1207– 1218. DOI: 10.1016/j.apenergy.2017.08.133.
  15. [15] A. Bracale, G. Carpinelli, and P. De Falco. “A Bayesian-based approach for the short-term forecasting of electrical loads in smart grids.: Part I: theoretical aspects”. In: 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE. 2016, 121–128. DOI: 10.1109/SPEEDAM.2016.7526022.
  16. [16] V. Dordonnat, A. Pichavant, and A. Pierrot, (2016) “GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models" International journal of forecasting 32(3): 1005–1011. DOI: 10.1016/j.ijforecast.2015.11.010.
  17. [17] F. Ziel and B. Liu, (2016) “Lasso estimation for GEFCom2014 probabilistic electric load forecasting" International Journal of Forecasting 32(3): 1029–1037. DOI: 10.1016/j.ijforecast.2016.01.001.
  18. [18] H. Quan, D. Srinivasan, and A. Khosravi, (2013) “Short-term load and wind power forecasting using neural network-based prediction intervals" IEEE transactions on neural networks and learning systems 25(2): 303–315. DOI: 10.1109/TNNLS.2013.2276053.
  19. [19] H. Quan, D. Srinivasan, and A. Khosravi, (2014) “Uncertainty handling using neural network-based prediction intervals for electrical load forecasting" Energy 73: 916– 925. DOI: 10.1016/
  20. [20] Y. Wang, N. Zhang, Q. Chen, D. S. Kirschen, P. Li, and Q. Xia, (2017) “Data-driven probabilistic net load forecasting with high penetration of behind-the-meter PV" IEEE Transactions on Power Systems 33(3): 3255–3264. DOI: 10.1109/TPWRS.2017.2762599.
  21. [21] B. L. Cabrera and F. Schulz, (2017) “Forecasting generalized quantiles of electricity demand: A functional data approach" Journal of the American Statistical Association 112(517): 127–136. DOI: 10.1080/01621459.2016.1219259.
  22. [22] S. B. Taieb, R. Huser, R. J. Hyndman, and M. G. Genton, (2016) “Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression" IEEE Transactions on Smart Grid 7(5): 2448–2455. DOI: 10.1109/TSG.2016.2527820.
  23. [23] S. Arora and J. W. Taylor, (2016) “Forecasting electricity smart meter data using conditional kernel density estimation" Omega 59: 47–59. DOI: 10.1016/
  24. [24] S. Salcedo-Sanz, C. Casanova-Mateo, J. MuñozMarí, and G. Camps-Valls, (2014) “Prediction of daily global solar irradiation using temporal Gaussian processes" IEEE Geoscience and Remote Sensing Letters 11(11): 1936–1940. DOI: 10.1109/LGRS.2014.2314315.
  25. [25] I. Bilionis, E. M. Constantinescu, and M. Anitescu, (2014) “Data-driven model for solar irradiation based on satellite observations" Solar energy 110: 22–38. DOI: 10.1016/j.solener.2014.09.009.
  26. [26] P. Lauret, C. Voyant, T. Soubdhan, M. David, and P. Poggi, (2015) “A benchmarking of machine learning techniques for solar radiation forecasting in an insular context" Solar Energy 112: 446–457. DOI: 10.1016/j.solener.2014.12.014.
  27. [27] H. Sheng, J. Xiao, Y. Cheng, Q. Ni, and S. Wang, (2017) “Short-term solar power forecasting based on weighted Gaussian process regression" IEEE Transactions on Industrial Electronics 65(1): 300–308. DOI: 10.1109/TIE. 2017.2714127.
  28. [28] P. Lauret, M. David, and D. Calogine, (2012) “Nonlinear models for short-time load forecasting" Energy Procedia 14: 1404–1409. DOI: 10.1016/j.egypro.2011.12.1109.
  29. [29] P. Kou and F. Gao, (2014) “A sparse heteroscedastic model for the probabilistic load forecasting in energyintensive enterprises" International Journal of Electrical Power & Energy Systems 55: 144–154. DOI: 10.1016/j.ijepes.2013.09.002.
  30. [30] B. Dong, Z. Li, S. M. Rahman, and R. Vega, (2016) “A hybrid model approach for forecasting future residential electricity consumption" Energy and Buildings 117: 341–351. DOI: 10.1016/j.enbuild.2015.09.033.
  31. [31] F. McLoughlin, A. Duffy, and M. Conlon, (2013) “Evaluation of time series techniques to characterise domestic electricity demand" Energy 50: 120–130. DOI: 10.1016/
  32. [32] J. R. Lloyd, (2014) “GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes" International Journal of Forecasting 30(2): 369–374. DOI: 10.1016/j.ijforecast.2013.07.002.
  33. [33] E. Ela, A. Tuohy, R. Entriken, E. Lannoye, and R. Philbrick. “Using probabilistic renewable forecasts to determine reserve requirements”. In: Proceedings of the 7th Solar Integration Workshop. International Workshop on Integration of Solar Power into Power Systems, EPRI, Berlin, Germany. 2017, 24–25.
  34. [34] J. Sarshar, S. S. Moosapour, and M. Joorabian, (2017) “Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting" Energy 139: 680–693. DOI: 10.1016/
  35. [35] A. S. Al-Sumaiti, M. M. Salama, and M. El-Moursi, (2017) “Enabling electricity access in developing countries: A probabilistic weather driven house based approach" Applied Energy 191: 531–548. DOI: 10.1016/j.apenergy.2017.01.075.
  36. [36] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning. 4. 4. Springer, 2006.



69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.