Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Than Thi Thuong1 and Vo Thanh Ha2This email address is being protected from spambots. You need JavaScript enabled to view it.

1Faculty of Electrical Engineering, University of Economics - Technology for Industries, Vietnam

2Faculty of Electrical and Electronic Engineering, University of Transport and Communications, Vietnam


 

Received: December 18, 2022
Accepted: August 19, 2023
Publication Date: October 6, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202405_27(5).0012  


The paper presents three position controller designs for a mobile robot. The first is a position controller using a classic PID controller. The second is the position controller is designed based on optimal three coefficients for PID controller by fuzzy logic control (FLC). The last, the mobile robot is moved according to the trajectories set by the FLC controller. All three controllers have two state variables (position error and position deviation derivative and one output variable, velocity) and one velocity output variable of the robot. The robot is moved according to the trajectories set based on the PID-FLC controller flow fuzzy rules with a 7x7 matrix to the optimal three coefficients of the PID controller. Meanwhile, the FLC controller is done by a 9x9 matrix rule. Evaluated the efficiency of PID-FLC and FLC controllers are compared to classical PID controllers. The correctness of the three controllers is proven through MATLAB/Simulink simulation. The PID-FLC controller has the result better than the other two controllers.


Keywords: Mobile Robot, PID, Fuzzy Logic Control, FLC, PID-Fuzzy


  1. [1] J. C. Alexander and J. H. Maddocks. “On the Kinematics of Wheeled Mobile Robots”. In: Autonomous Robot Vehicles. Ed. by I. J. Cox and G. T. Wilfong. New York, NY: Springer New York, 1990, 5–24. DOI: 10.1007/978-1-4613-8997-2_1.
  2. [2] J. Barraquand and J.-C. Latombe, (1993) “Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles" Algorithmica 10(2-4): 121–155. DOI: 10.1007/BF01891837.
  3. [3] G. Campion, G. Bastin, and B. D’Andréa-Novel, (1996) “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots" IEEE Transactions on Robotics and Automation 12(1): 47–62. DOI: 10.1109/70.481750.
  4. [4] H. Maaref and C. Barret, (2002) “Sensor-based navigation of a mobile robot in an indoor environment" Robotics and Autonomous Systems 38(1): 1–18. DOI: https: //doi.org/10.1016/S0921-8890(01)00165-8.
  5. [5] S. Thongchai, S. Suksakulchai, D. Wilkes, and N. Sarkar. “Sonar behavior-based fuzzy control for a mobile robot”. In: Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. ’cybernetics evolving to systems, humans, organizations, and their complex interactions’ (cat. no.0. 5. 2000, 3532–3537 vol.5. DOI: 10.1109/ICSMC.2000.886556.
  6. [6] I. Kolmanovsky and N. McClamroch, (1995) “Developments in nonholonomic control problems" IEEE Control Systems Magazine 15(6): 20–36. DOI: 10.1109/37.476384.
  7. [7] F. L. Lewis, D. M. Dawson, and C. T. Abdallah. Robot manipulator control: theory and practice. CRC Press, 2003.
  8. [8] Y. Li, L. Zhu, and M. Sun, (2013) “Adaptive neuralnetwork control of mobile robot formations including actuator dynamics" Applied Mechanics and Materials 303-306: 1768–1773. DOI: 10.4028/www.scientific. net/AMM.303-306.1768.
  9. [9] L. Yan-dong, Z. Ling, and S. Ming, (2013) “Adaptive RBFNN formation control of multi-mobile robots with actuator dynamics" TELKOMNIKA Indonesian Journal of Electrical Engineering 11(4): 1797–1806. DOI: 10.11591/telkomnika.v11i4.2334.
  10. [10] R. DeCarlo, (1996) “Variable structure sliding-mode controller design" Control Handbook: DOI: 10.1201/b10384-59.
  11. [11] E. Derks, M. S. Pastor, and L. Buydens, (1995) “Robustness analysis of radial base function and multi-layered feed-forward neural network models" Chemometrics and Intelligent Laboratory Systems 28(1): 49–60. DOI: 10.1016/0169-7439(95)80039-c.
  12. [12] F. P. Freire, N. A. Martins, and F. Splendor, (2018) “A simple optimization method for tuning the gains of PID controllers for the autopilot of cessna 182 aircraft using model-in-the-loop platform" Journal of Control, Automation and Electrical Systems 29: 441–450. DOI: 10.1007/s40313-018-0391-x.
  13. [13] W. Gao and J. C. Hung, (1993) “Variable structure control of nonlinear systems: A new approach" IEEE transactions on Industrial Electronics 40(1): 45–55. DOI: 10.1109/41.184820.
  14. [14] F. Lewis, S. Jagannathan, and A. Yesildirak. Neural network control of robot manipulators and non-linear systems. CRC press, 1998.
  15. [15] F. L. Lewis, D. M. Dawson, and C. T. Abdallah. Robot manipulator control: theory and practice. CRC Press, 2003.
  16. [16] Y. Li, S. Qiang, X. Zhuang, and O. Kaynak, (2004) “Robust and adaptive backstepping control for nonlinear systems using RBF neural networks" IEEE Transactions on Neural Networks 15(3): 693–701. DOI: 10.1109/TNN.2004.826215.
  17. [17] J. Keighobadi and Y. Mohamadi. “Fuzzy Sliding Mode Control of non-holonomic Wheeled Mobile Robot”. In: 2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI). 2011, 273–278. DOI: 10.1109/SAMI.2011.5738888.
  18. [18] M. Begnini, D. W. Bertol, and N. A. Martins, (2017) “A robust adaptive fuzzy variable structure tracking control for the wheeled mobile robot: Simulation and experimental results" Control Engineering Practice 64: 27–43. DOI: https: //doi.org/10.1016/j.conengprac.2017.04.006.
  19. [19] M. Begnini, W. Bertol, and N. A. Martins, (2018) “Design of an adaptive fuzzy variable structure compensator for the nonholonomic mobile robot in trajectory tracking task" Control and Cybernetics 47(3): 239–275. DOI: 10.5281/zenodo.4282917.
  20. [20] M. Begnini, D. W. Bertol, and N. A. Martins, (2018) “Practical implementation of an effective robust adaptive fuzzy variable structure tracking control for a wheeled mobile robot" Journal of Intelligent & Fuzzy Systems 35(1): 1087–1101. DOI: 10.3233/JIFS-17699.
  21. [21] N. A. Martins, E. R. De Pieri, U. F. Moreno, et al., (2014) “PD-super-twisting second order sliding mode tracking control for a nonholonomic wheeled mobile robot" IFAC Proceedings Volumes 47(3): 3827–3832. DOI: 10.3182/20140824-6-ZA-1003.02210.
  22. [22] J. A. Goguen, (1973) “L. A. Zadeh. Fuzzy sets. Information and control, vol. 8 (1965), pp. 338–353. - L. A. Zadeh. Similarity relations and fuzzy orderings. Information sciences, vol. 3 (1971), pp. 177–200." The Journal of Symbolic Logic 38(4): 656–657. DOI: 10.2307/2272014.
  23. [23] J. Zhang, N. Wang, and S. Wang. “A developed method of tuning PID controllers with fuzzy rules for integrating processes”. In: Proceedings of the 2004 American Control Conference. 2. IEEE. 2004, 1109–1114. DOI: 10.23919/ACC.2004.1386720.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.