Dake XuThis email address is being protected from spambots. You need JavaScript enabled to view it.

China Urban Construction Design and Research Institute, Beijing, 100120, China


Received: May 17, 2022
Accepted: February 9, 2023
Publication Date: May 2, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.6180/jase.202401_27(01).0001  

The present study proposed a hydro-economic framework for water allocation within the Zayande-Rud basin located in Iran, including urban, industry, agriculture, and environmental sectors as water users. The developed framework can investigate the environmental, economic, and social impacts of the economic-oriented water allocation as well as distributions using respective indices. The hydrologic simulation results indicated that the water scarcity dedicated to different sectors, mostly affected the environment by a 45% water deficit, while residential plus industry sections had a 31% and 29% water shortage, respectively. The application of the hydro-economic model (HEM) for water allocation under the water shortage scenario led to a 9.6%, 4%, and 6% increase in the irrigated area (47467 ha), farmers’ profit (equal to 9.7 million USD), and the employment rate in comparison with the base conditions, respectively. By utilizing the proposed hydro-economic model, the simulation results revealed that the irrigated area can be increased as much as 14%, a further 6% increase in profits for farmers (about 12.7 million USD), and enhancing the employment rate up to10.6%. Moreover, water consumption in agriculture sector can be reduced by 15% compared with traditional water allocation method. Accordingly, using such an integrated water distribution model in a basin with different kinds of water users could give policy-makers an actual view of integrated water management while conducting such plans requires testing in real conditions to analyze the hidden problems as barriers. 

Keywords: Hydro-economy, Positive mathematical programming, Water allocation, Zayande-Rud Basin, Socio-economic

  1. [1] A. Hatamkhani and A. Moridi, (2021) “Optimal Devel-opment of Agricultural Sectors in the Basin Based on Eco-nomic Efficiency and Social Equality" Water Resources Management 35(3):917–932. DOI: 10.1007/s11269-020-02754-7. 
  2. [2] F. J. Ferna´ndez, R. D. Ponce, M. Blanco, D. Rivera, and F. Va´squez, (2016) “Water Variability and the Economic Impacts on Small-Scale Farmers. A Farm Risk-Based In-tegrated Modelling Approach" Water Resources Man-agement 30(4): 1357–1373. DOI: 10.1007/s11269-016-1227-8.
  3. [3] T. Foster, N. Brozovi ´ c, and A. P. Butler, (2014) “Modeling irrigation behavior in groundwater systems" Water Resources Research 50(8): 6370–6389. DOI: 10.1002/2014WR015620.
  4. [4] I. Blanco-Gutie´rrez, C. Varela-Ortega, and D. R. Purkey, (2013) “Integrated assessment of policy interven-tions for promoting sustainable irrigation in semiarid environments: A hydro-economic modeling approach" Jour-nal of Environmental Management 128: 144–160. DOI: 10.1016/j.jenvman.2013.04.037.
  5. [5] N. Graveline, B. Majone, R. van Duinen, and E. Ansink, (2014) “Hydro-economic modeling of water scarcity under global change: An application to the Gallego´ river basin (Spain)" Regional Environmen-tal Change 14(1): 119–132. DOI: 10.1007/s10113-013-0472-0.
  6. [6] S. Pen˜a-Haro, M. Pulido-Velazquez, and C. Llopis-Albert, (2011) “Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty" Environmental Modelling and Software 26(8): 999-1008. DOI: 10.1016/j.envsoft.2011.02.010.
  7. [7] D. R. D’Agostino, A. Scardigno, N. Lamaddalena, and D. E. Chami, (2014) “Sensitivity analysis of coupled hydro-economic models: Quantifying climate change un-certainty for decision-making" Water Resources Man-agement 28(12): 4303–4318. DOI: 10.1007/s11269-014-0748-2.
  8. [8] Y.-C. E. Yang, C. M. Brown, W. H. Yu, and A. Savitsky, (2013) “An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan’s Indus River basin" Water International 38(5): 632–650. DOI: 10.1080/02508060.2013.830691.
  9. [9] G. N. Souza da Silva and M. M. G. Alcoforado de Moraes, (2021) “Decision support for the (Inter-)basin management of water resources using integrated hydro-economic modeling" Hydrology 8(1): DOI:10.3390/hydrology8010042.
  10. [10] A. Jamshidpey and M. Shourian, (2021) “Crop pat-tern planning and irrigation water allocation compati-ble with climate change using a coupled network flow programming-heuristic optimization model" Hydrolog-ical Sciences Journal 66(1): 90–103. DOI: 10.1080/ 02626667.2020.1844889.
  11. [11] B. T.Wahlin and A. J. Clemmens, (2006) “Automatic downstream water-level feedback control of branching canal networks: Theory" Journal of Irrigation and Drainage Engineering 132(3): 198–207. DOI: 10.1061/(ASCE)0733-9437(2006)132:3(198).
  12. 12] L. A. Candido, G. A. G. Coêlho, M. M. G. A. De Moraes, and L. Florêncio, (2022) “Review of Decision Support Systems and Allocation Models for Integrated Water Resources Management Focusing on Joint Water Quantity-Quality" Journal of Water Resources Planning and Management 148(2): DOI: 10.1061/(ASCE) WR.1943-5452.0001496.
  13. [13] J. J. Harou, M. Pulido-Velazquez, D. E. Rosenberg, J. Medelli´n-Azuara, J. R. Lund, and R. E. Howitt, (2009) “Hydro-economic models: Concepts, design, applications, and future prospects" Journal of Hydrology 375(3-4): 627–643. DOI: 10.1016/j.jhydrol.2009.06.037.
  14. [14] S. Kim, J. Lee, J. Kim, Y. Kim, H. Shin, I. Song, and S. Kim, (2022) “Evaluation of Agricultural Water Supply and Selection of Deficient Districts in Yeongsan River Basin of South Korea Considering Supply Priority" Water (Switzerland) 14(3): DOI: 10.3390/w14030298.
  15. [15] J. W. Fredericks, J. W. Labadie, and J. M. Altenhofen, (1998) “Decision support system for conjunctive stream-aquifer management" Journal of Water Resources Planning and Management 124(2): 69–78. DOI:10.1061/(ASCE)0733-9496(1998)124:2(69).
  16. [16] K. S. Kumar, R. Galkate, and H. Tiwari, (2021) “River basin modelling for Shipra River using MIKE BASIN" ISH Journal of Hydraulic Engineering 27(2): 188– 199. DOI: 10.1080/09715010.2018.1534219.
  17. [17] S. Haykin, (2001) “Redes Neurais: princ´ipios e pr´atica, 2aedic ˜ao, traduc ˜ao: Paulo Martins Engel" Editora: Bookman, Porto Alegre, Cap 1(2): 3.
  18. [18] E. Tsanov, I. Ribarova, G. Dimova, P. Ninov, M. Kos-sida, and C. Makropoulos, (2020) “Water stress miti-gation in the vit river basin based on WEAP and MatLab simulation" Civil Engineering Journal (Iran) 6(11): 2058–2071. DOI: 10.28991/cej-2020-03091602.
  19. [19] D. Yates, J. Sieber, D. Purkey, and A. Huber-Lee, (2005) “WEAP21 - A demand-, priority-, and preference-driven water planning model. Part 1: Model character-istics" Water International 30(4): 487–500. DOI: 10.1080/02508060508691893.
  20. [20] M. P. McCartney and R. Arranz. Evaluation of historic, current and future water demand in the Olifants River Catchment, South Africa. 118. IWMI, 2007.
  21. [21] P. Bitterman and C. J. Koliba, (2020) “Modeling Alter-native Collaborative Governance Network Designs: An Agent-Based Model of Water Governance in the Lake Champlain Basin, Vermont" Journal of Public Admin-istration Research and Theory 30(4): 636–655. DOI:10.1093/jopart/muaa013.
  22. [22] B. C. Perera, B. James, and M. U. Kularathna, (2005) “Computer software tool REALM for sustainable water allocation and management" Journal of Environmental Management 77(4): 291–300. DOI: 10.1016/j.jenvman. 2005.06.014.
  23. [23] S. Baccour, J. Albiac, T. Kahil, E. Esteban, D. Cre-spo, and A. Dinar, (2021) “Hydroeconomic modeling for assessing water scarcity and agricultural pollution abate-ment policies in the Ebro River Basin, Spain" Journal of Cleaner Production 327: DOI: 10.1016/j.jclepro.2021. 129459.
  24. [24] C. Ringler and N. V. Huy. Water allocation policies for the Dong Nai River Basin in Vietnam: an integrated perspective. Intl Food Policy Res Inst, 2004.
  25. [25] M. Rosegrant and P. B. Hazell. Transforming the ru-ral Asian economy: The unfinished revolution. 1. Asian Development Bank, 2000.
  26. [26] J. S. Baker, G. L. Van Houtven, F. Moreda, J. H. Red-mon, Y. Cai, C. Wade, C. Henry, et al., (2021) “A hydro-economic methodology for the food-energy-water nexus":
  27. [27] L. Deng, S. Guo, J. Yin, Y. Zeng, and K. Chen, (2022) “Multi-objective optimization of water resources allocation in Han River basin (China) integrating efficiency, equity and sustainability" Scientific Reports 12(1): DOI: 10.1038/s41598-021-04734-2.
  28. [28] A. Carpenter and M. K. Choudhary, (2022) “Water Demand and Supply Analysis using WEAP Model for Veda River Basin Madhya Pradesh (Nimar Region), In-dia" Trends in Sciences 19(6): DOI: 10.48048/tis.2022.3050.
  29. [29] M. Aghapour Sabbaghi, M. Nazari, S. Araghinejad, and S. Soufizadeh, (2020) “Economic impacts of cli-mate change on water resources and agriculture in Za-yandehroud river basin in Iran" Agricultural Water Management 241: DOI: 10.1016/j.agwat.2020.106323.
  30. [30] J. Medell´in-Azuara, D. MacEwan, R. E. Howitt, G. Koruakos, E. C. Dogrul, C. F. Brush, T. N. Kadir, T. Harter, F. Melton, and J. R. Lund, (2015) “Hydroeconomic analysis of groundwater pumping for irrigated agriculture in California’s Central Valley, USA; [Analyse hydro- ´ economique des pompages d’eaux souterraines pour l’agriculture irrigu ´ ee dans la vall ´ ee Centrale en Californie, Etats Unis d’Am´ erique]; [Wasserwirtschaftliche Analyse der Grundwasserversorgung fuer die Bewaesserte Landwirtschaft im Grossen Zentraltal Kalifornien’s, USA]; [An´alise hidroeconômica do bombeamento das ´aguas subterrâneas para agricultura irrigada no Vale Central da Califórnia, EUA]; [An´alisis hidroecon´omico del bombeo de agua subterr ´anea para el riego agr´icola en el Valle Central de California, EEUU]" Hydrogeology Journal 23(6): 1205–1216. DOI: 10.1007/s10040-015-1283-9.
  31. [31] R. E. Howitt, J. Medelli´n-Azuara, D. MacEwan, and J. R. Lund, (2012) “Calibrating disaggregate economic models of agricultural production and water manage-ment" Environmental Modelling and Software 38: 244–258. DOI: 10.1016/j.envsoft.2012.06.013.
  32. [32] A. Alamanos, D. Latinopoulos, G. Papaioannou, and N. Mylopoulos, (2019) “Integrated Hydro-Economic Modeling for Sustainable Water Resources Management in Data-Scarce Areas: The Case of Lake Karla Watershed in Greece" Water Resources Management 33(8): 2775– 2790. DOI: 10.1007/s11269-019-02241-8.
  33. [33] L. G. Forni, J. Medelli´n-Azuara, M. Tansey, C. Young, D. Purkey, and R. Howitt, (2016) “Integrating complex economic and hydrologic planning models: An application for drought under climate change analysis" Water Re-sources and Economics 16: 15–27. DOI: 10.1016/j. wre.2016.10.002.
  34. [34] A. Mirzaei and M. Zibaei, (2021) “Water Conflict Management between Agriculture and Wetland under Climate Change: Application of Economic-Hydrological-Behavioral Modelling" Water Resources Management 35(1): 1–21. DOI: 10.1007/s11269-020-02703-4.
  35. [35] Y. Xiao, L. Fang, and K. Hipel, (2021) “Conservation-targeted hydrologic-economic models for water demand management" Journal of Environmental Informatics 37(1): 49–61. DOI: 10.3808/jei.201900418.
  36. [36] C. D. P. Mattiuzi, G. F. Marques, and J. Medelli´n-Azuara, (2019) “Reassessing water allocation strategies and conjunctive use to reduce water scarcity and scarcity costs for irrigated agriculture in Southern Brazil" Water (Switzerland) 11(6): DOI: 10.3390/w11061140.
  37. [37] J. Medelli´n-Azuara. “Economic-engineering analysis of water management for restoring the Colorado River Delta". (phdthesis). Citeseer, 2006.
  38. [38] R. E. Howitt, (1995) “Positive mathematical programming" American Journal of Agricultural Economics 77(2): 329–342. DOI: 10.2307/1243543.
  39. [39] T. Heckelei andW. Britz, (2000) “Positive mathematical programming with multiple data points: A cross-sectional estimation procedure." Cahiers d’Economie et de Sociologie Rurales (CESR) 57(905-2016-70480): 27–50.
  40. [40] J. M. Gonzalez, M. A. Olivares, J. Medell´in-Azuara, and R. Moreno, (2020) “Multipurpose Reservoir Operation: a Multi-Scale Tradeoff Analysis between Hydropower Generation and Irrigated Agriculture"Water Resources Management 34(9): 2837–2849. DOI: 10.1007/s11269-020-02586-5.
  41. [41] P. Howitt, (2005) “Health, human capital, and economic growth: A Schumpeterian perspective" Health and economic growth: Findings and policy implications 1:19–40.
  42. [42] R. Cortignani and S. Severini, (2009) “Modeling farmlevel adoption of deficit irrigation using Positive Mathematical Programming" Agricultural Water Management 96(12): 1785–1791. DOI: 10.1016/j.agwat.2009.07.016.
  43. [43] S. H. Moghadam, P.-S. Ashofteh, and H. A. Lo´aiciga, (2022) “Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling" Water Resources Management 36(9): 3181–3205. DOI: 10.1007/s11269-022-03195-0.
  44. [44] J. A. G´omez-Lim´on and G. Sanchez-Fernandez, (2010) “Empirical evaluation of agricultural sustainability using composite indicators" Ecological Economics 69(5):1062–1075. DOI: 10.1016/j.ecolecon.2009.11.027.
  45. [45] A. Xavier, M. d. B. Costa Freitas, R. Fragoso, and M. d. S. Ros´ario, (2018) “A regional composite indicator for analysing agricultural sustainability in Portugal: A goal programming approach" Ecological Indicators 89: 84–100. DOI: 10.1016/j.ecolind.2018.01.048.
  46. [46] N. Van Cauwenbergh, K. Biala, C. Bielders, V. Brouckaert, L. Franchois, V. Garcia Cidad, M. Hermy, E. Mathijs, B. Muys, J. Reijnders, X. Sauvenier, J. Valckx, M. Vanclooster, B. Van der Veken, E. Wauters, and A. Peeters, (2007) “SAFE-A hierarchical framework for assessing the sustainability of agricultural systems" Agriculture, Ecosystems and Environment 120(2-4): 229–242. DOI: 10.1016/j.agee.2006.09.006.
  47. [47] A. Khan, D. Kamal, M. Mahmud, M. Rahman, M. Hossain, et al., (2007) “Diversity, distribution and abundance of benthos in Mouri River, Khulna, Bangladesh" International journal of sustainable crop production 2(5): 19–23.
  48. [48] B. Ghosh and N. Chakma, (2019) “Composite indicator of land, water and energy for measuring agricultural sustainability at micro level, Barddhaman District, West Bengal, India" Ecological Indicators 102: 21–32. DOI: 10.1016/j.ecolind.2019.02.011.
  49. [49] S. A. Hatirli, B. Ozkan, and C. Fert, (2006) “Energy inputs and crop yield relationship in greenhouse tomato production" Renewable Energy 31(4): 427–438. DOI: 10.1016/j.renene.2005.04.007.
  50. [50] A. S. Shahraki, J. Shahraki, and S. A. H. Monfared, (2019) “An Integrated Water Resources Management Considering Agricultural Demands and the Assessment of Different Scenarios in Hirmand Catchment, Iran" Water Resources 46(2): 308–317. DOI: 10.1134/S0097807819020143.
  51. [51] C. Varela-Ortega, I. Blanco-Guti´ errez, C. H. Swartz, and T. E. Downing, (2011) “Balancing groundwater conservation and rural livelihoods under water and climate uncertainties: An integrated hydro-economic modeling framework" Global Environmental Change 21(2): 604–619. DOI: 10.1016/j.gloenvcha.2010.12.001.
  52. [52] J. Gallego-Ayala, (2012) “Selecting irrigation water pricing alternatives using a multi-methodological approach" Mathematical and Computer Modelling 55(3-4): 861–883. DOI: 10.1016/j.mcm.2011.09.014.
  53. [53] G. Carmona, C. Varela-Ortega, and J. Bromley, (2013) “Supporting decision making under uncertainty: Development of a participatory integrated model for water management in the middle Guadiana river basin" Environmental Modelling and Software 50: 144–157. DOI: 10.1016/j.envsoft.2013.09.007.
  54. [54] H. G. Mobtaker, A. Keyhani, A. Mohammadi, S. Rafiee, and A. Akram, (2010) “Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran" Agriculture, Ecosystems and Environment 137(3-4): 367–372. DOI: 10.1016/j.agee.2010.03.011.
  55. [55] S. Elsoragaby, A. Yahya, M. R. Mahadi, N. M. Nawi, and M. Mairghany, (2019) “Energy utilization in major crop cultivation" Energy 173: 1285–1303. DOI: 10.1016/j.energy.2019.01.142.
  56. [56] J. Medell´in-Azuara, J. J. Harou, and R. E. Howitt, (2010) “Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation" Science of the Total Environment 408(23): 5639–5648. DOI: 10.1016/j.scitotenv.2009.08.013.


42nd percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.