REFERENCES
- [1] M. Safari, D. D. Ganji, and M. Moslemi, (2009) “Application of He’s variational iteration method and Adomian’s decomposition method to the fractional KdV-Burgers-Kuramoto equation" Computers & Mathematics with Applications 58(11-12): 2091–2097. DOI: 10.1016/j.camwa.2009.03.043.
- [2] S. Momani and K. AlKhaled, (2005) “Numerical solutions for systems of fractional differential equations by the decomposition method" Applied Mathematics and Computation 162(3): 1351–1365. DOI: 10.1016/j.amc.2004.03.014.
- [3] S. Das, (2009) “Analytical solution of a fractional diffusion equation by variational iteration method" Computers & Mathematics with Applications 57(3): 483–487. DOI: 10.1016/j.camwa.2008.09.045.
- [4] G.-C. Wu and D. Baleanu, (2013) “Variational iteration method for the Burgers’ flow with fractional derivatives—new Lagrange multipliers" Applied Mathematical Modelling 37(9): 6183–6190. DOI: 10.1016/j.apm.2012.12.018.
- [5] M. Dehghan, J. Manafian, and A. Saadatmandi, (2010) “Solving nonlinear fractional partial differential equations using the homotopy analysis method" Numerical Methods for Partial Differential Equations: An International Journal 26(2): 448–479. DOI: 10.1002/num.20460.
- [6] H. Jafari and S. Seifi, (2009) “Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation" Communications in Nonlinear Science and Numerical Simulation 14(5): 2006–2012. DOI: 10.1016/j.cnsns.2008.05.008.
- [7] Z. Ganji, D. D. Ganji, A. D. Ganji, and M. Rostamian, (2010) “Analytical solution of time-fractional Navier–Stokes equation in polar coordinate by homotopy perturbation method" Numerical Methods for Partial Differential Equations: An International Journal 26(1): 117–124. DOI: 10.1002/num.20420.
- [8] E. Unal and A. Gokdougan, (2017) “Solution of conformable fractional ordinary differential equations via differential transform method" Optik 128: 264–273. DOI: 10.1016/j.ijleo.2016.10.031.
- [9] A. Arikoglu and I. Ozkol, (2007) “Solution of fractional differential equations by using differential transform method" Chaos, Solitons & Fractals 34(5): 1473–1481. DOI: 10.1016/j.chaos.2006.09.004.
- [10] W. Al-Hayani et al., (2017) “Daftardar-Jafari method for fractional heat-like and wave-like equations with variable coefficients" Applied Mathematics 8(02): 215.
- [11] S. Bhalekar and V. Daftardar-Gejji, (2012) “Solving fractional-order logistic equation using a new iterative method" International Journal of Differential Equations 2012: DOI: 10.1155/2012/975829.
- [12] L. Akinyemi, (2021) “Two improved techniques for the perturbed nonlinear Biswas–Milovic equation and its optical solitons" Optik 243: 167477. DOI: 10.1016/j.ijleo.2021.167477.
- [13] H. Rezazadeh, D. Kumar, T. A. Sulaiman, and H. Bulut, (2019) “New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation" Modern Physics Letters B 33(17): 1950196. DOI: 10.1142/S0217984919501963.
- [14] N. NGbo and Y. Xia, (2022) “Traveling Wave Solution of Bad and Good Modified Boussinesq Equations with Conformable Fractional-Order Derivative" Qualitative Theory of Dynamical Systems 21(1): 1–21. DOI: 10.1007/s12346-021-00541-2.
- [15] B. Zhang, W. Zhu, Y. Xia, and Y. Bai, (2020) “A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Biswas–Milovic equation: via bifurcation theory of dynamical system" Qualitative theory of dynamical systems 19(1): 1–28. DOI: 10.1007/s12346-020-00352-x.
- [16] W. Zhu, Y. Xia, B. Zhang, and Y. Bai, (2019) “Exact traveling wave solutions and bifurcations of the timefractional differential equations with applications" International Journal of Bifurcation and Chaos 29(03): 1950041. DOI: 10.1142/S021812741950041X.
- [17] H. Zheng, Y. Xia, Y. Bai, and L. Wu, (2021) “Travelling wave solutions of the general regularized long wave equation" Qualitative theory of dynamical systems 20(1): 1–21. DOI: 10.1007/s12346-020-00442-w.
- [18] S. Abbagari, Y. Saliou, A. Houwe, L. Akinyemi, M. Inc, and T. B. Bouetou, (2022) “Modulated wave and modulation instability gain brought by the cross-phase modulation in birefringent fibers having anti-cubic nonlinearity" Physics Letters A 442: 128191. DOI: 10.1016/j.physleta.2022.128191.
- [19] K. S. Nisar, M. Inc, A. Jhangeer, M. Muddassar, and B. Infal, (2022) “New soliton solutions of Heisenberg ferromagnetic spin chain model" Pramana 96(1): 1–8. DOI: 10.1007/s12043-021-02266-y.
- [20] H. Halidou, S. Abbagari, A. Houwe, M. Inc, and B. B. Thomas, (2022) “Rational W-shape solitons on a nonlinear electrical transmission line with Josephson junction" Physics Letters A 430: 127951. DOI: 10.1016/j.physleta.2022.127951.
- [21] S.-W. Yao, R. Manzoor, A. Zafar, M. Inc, S. Abbagari, and A. Houwe, (2022) “Exact soliton solutions to the Cahn–Allen equation and Predator–Prey model with truncated M-fractional derivative" Results in Physics 37: 105455. DOI: 10.1016/j.rinp.2022.105455.
- [22] K. S. Nisar, I. E. Inan, H. Yepez-Martinez, and M. Inc, (2022) “Some new type optical and the other soliton solutions of coupled nonlinear Hirota equation" Results in Physics 35: 105388. DOI: 10.1016/j.rinp.2022.105388.
- [23] M. M. Khater, (2021) “Diverse bistable dark novel explicit
wave solutions of cubic–quintic nonlinear Helmholtz model" Modern Physics Letters B 35(26): 2150441. DOI: 10.1142/S0217984921504418.
- [24] H. Rezazadeh, (2018) “New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity" Optik 167: 218–227. DOI: 10.1016/j.ijleo.2018.04.026.
- [25] M. M. Khater, (2021) “Abundant wave solutions of the perturbed Gerdjikov–Ivanov equation in telecommunication industry" Modern Physics Letters B 35(26): 2150456. DOI: 10.1142/S021798492150456X.
- [26] M. M. Khater, S. Elagan, M. El-Shorbagy, S. Alfalqi, J. Alzaidi, and N. A. Alshehri, (2021) “Folded novel accurate analytical and semi-analytical solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation" Communications in Theoretical Physics 73(9): 095003. DOI: 10.1088/1572-9494/ac049f.
- [27] M. M. Khater and D. Lu, (2021) “Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation" Modern Physics Letters B 35(19): 2150324. DOI: 10.1142/S0217984921503243.
- [28] M. M. Khater, (2021) “Abundant breather and semianalytical investigation: On high-frequency waves’ dynamics in the relaxation medium" Modern Physics Letters B 35(22): 2150372. DOI: 10.1142/S0217984921503723.
- [29] M. S. Shehata, H. Rezazadeh, E. H. Zahran, E. Tala-Tebue, and A. Bekir, (2019) “New optical soliton solutions of the perturbed Fokas-Lenells equation" Communications in Theoretical Physics 71(11): 1275. DOI: 10.1088/0253-6102/71/11/1275.
- [30] M. M. Khater, (2021) “Numerical simulations of Zakharov’s (ZK) non-dimensional equation arising in Langmuir and ion-acoustic waves" Modern Physics Letters B 35(31): 2150480.
- [31] M. M. Khater, (2021) “Diverse solitary and Jacobian solutions in a continually laminated fluid with respect to shear flows through the Ostrovsky equation" Modern Physics Letters B 35(13): 2150220. DOI: 10.1142/S0217984921502201.
- [32] V. Daftardar-Gejji and H. Jafari, (2006) “An iterative method for solving nonlinear functional equations" Journal of mathematical analysis and applications 316(2): 753–763. DOI: 10.1016/j.jmaa.2005.05.009.
- [33] J. Patade and S. Bhalekar, (2015) “A new numerical method based on Daftardar-Gejji and Jafari technique for solving differential equations"World J. Model. Simul 11: 256–271.
- [34] I. Ullah, H. Khan, and M. T. Rahim, (2014) “Numerical solutions of fifth and sixth order nonlinear boundary value problems by Daftardar Jafari method" Journal of Computational Engineering 2014:
- [35] M. A. AL-Jawary, G. H. Radhi, and J. Ravnik, (2018) “Daftardar-Jafari method for solving nonlinear thin film flow problem" Arab Journal of Basic and Applied Sciences 25(1): 20–27. DOI: 10.1080/25765299.2018.1449345.
- [36] H. Koçak, T. Özi¸s, and A. Yıldırım, (2010) “Homotopy perturbation method for the nonlinear dispersive K (m, n, 1) equations with fractional time derivatives" International Journal of Numerical Methods for Heat & Fluid Flow 20(2): 174–185. DOI: 10.1108/09615531011016948.
- [37] L. Tian and J. Yin, (2007) “Shock-peakon and shockcompacton solutions for K (p, q) equation by variational iteration method" Journal of Computational and Applied Mathematics 207(1): 46–52. DOI: 10.1016/j.cam.2006.07.026.
- [38] Y. Zhu, K. Tong, and T. Chaolu, (2007) “New exact solitary-wave solutions for the K (2, 2, 1) and K (3, 3, 1) equations" Chaos, Solitons & Fractals 33(4): 1411–1416. DOI: 10.1016/j.chaos.2006.01.090.
- [39] Y. Cenesiz, Y. Keskin, and A. Kurnaz, (2011) “The solution of the nonlinear dispersive K (m, n, 1) equations by RDT method" Selcuk Journal of Applied Mathematics 12(2): 53–61.
- [40] L. Tian and J. Yin, (2005) “Stability of multi-compacton solutions and Backlund transformation in K (m, n, 1)" Chaos, Solitons & Fractals 23(1): 159–169. DOI: 10.1016/j.chaos.2004.04.004.
- [41] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, (2014) “A new definition of fractional derivative" Journal of computational and applied mathematics 264: 65–70. DOI: 10.1016/j.cam.2014.01.002.
- [42] T. Abdeljawad, (2015) “On conformable fractional calculus" Journal of computational and Applied Mathematics 279: 57–66. DOI: 10.1016/j.cam.2014.10.016.
- [43] M. Eslami and H. Rezazadeh, (2016) “The first integral method for Wu–Zhang system with conformable timefractional derivative" Calcolo 53(3): 475–485. DOI: 10.1007/s10092-015-0158-8.
- [44] H. Aminikhah, A. H. R. Sheikhani, and H. Rezazadeh, (2016) “Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method" Boletim da sociedade paranaense de matemática 34(2): 213–229. DOI: 10.5269/bspm.v34i2.25501.
- [45] H. Rezazadeh, A. Korkmaz, M. Eslami, J. Vahidi, and R. Asghari, (2018) “Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method" Optical and Quantum Electronics 50(3): 1–13. DOI: 10.1007/s11082-018-1416-1.
- [46] A. Korkmaz, (2019) “Explicit exact solutions to some one-dimensional conformable time fractional equations" Waves in Random and Complex Media 29(1): 124–137. DOI: 10.1080/17455030.2017.1416702.
- [47] H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, (2015) “Exact solutions for the fractional differential equations by using the first integral method" Nonlinear engineering 4(1): 15–22. DOI: 10.1515/nleng-2014-0018.