Nguyen Thi Truc Phuong1,2, Le Nguyen Quang Tu1,2, Lam Hoa Hung1,2, Nguyen Van Dung1,2, Ngo Tran Hoang Duong1,2, and Nguyen Quang Long This email address is being protected from spambots. You need JavaScript enabled to view it.1,2

1Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
2Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam


 

Received: June 28, 2022
Accepted: August 10, 2022
Publication Date: September 13, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202306_26(6).0005  


ABSTRACT


Carbon capture and storage has become a widespread concern as a key technology in the global commitment to tackle climate change. Adsorption, especially when the regeneration process is carried out through a pressure reduction (pressure swing adsorption – PSA) is one of the promising solutions for reducing energy consumption, environmental impact, and the cost of CO2 capture. In this paper, zeolite FAU (type X) was chosen to be modified into hierarchically porous structure by using top-down approach with the combination between Ethylenediaminetetraacetic acid (EDTA), NaOH and Cetyltrimethylammonium bromide (CTAB), which is expected to be used as a potential material adsorbent in pressure swing adsorption (PSA) system for COadsorption. The study of CO2 adsorption at 30°C has shown that mesoporous structure helps to increase strongly not only the rate of CO2 adsorption but also the selectivity between CO2/CH4, CO2/N2 and the regeneration yield in the same amount of vacuuming time with the original zeolite X while only mitigating slightly the CO2 adsorption capacity. The mesoporous structure of materials was proved through XRD patterns and pore-size distribution results. The CO2 adsorption procedures at different temperatures (0°C, 15°C, 30°C) were also conducted to calculate the thermodynamic adsorption parameters. After ten-time reusing, the material retains more than 90% adsorption capacity compared with the first time.


Keywords: Mesoporous zeolite, CO2 adsorption, acid-base leaching, FAU zeolite


REFERENCES


  1. [1] M. Zeynalian, A. H. Hajialirezaei, A. R. Razmi, and M. Torabi, (2020) “Carbon dioxide capture from compressed air energy storage system" Applied Thermal Engineering 178: 115593. DOI: 10.1016/j.applthermaleng.2020.115593.
  2. [2] T. Zurrer, K. Wong, J. Horlyck, E. C. Lovell, J. Wright, N. M. Bedford, Z. Han, K. Liang, J. Scott, and R. Amal, (2021) “Mixed-Metal MOF-74 Templated Catalysts for Efficient Carbon Dioxide Capture and Methanation" Advanced Functional Materials 31(9): 2007624. DOI: 10.1002/adfm.202007624.
  3. [3] P. Chaiwang, C. Sakaunnapaporn, T. Sema, P. Piumsomboon, B. Chalermsinsuwan, et al., (2020) “Statistical experimental design for carbon dioxide capture in circulating fluidized bed using computational fluid dynamics simulation: effect of operating parameters" Journal of Applied Science and Engineering 23(2): 303–317. DOI: 10.6180/JASE.202006_23(2).0014.
  4. [4] M. Imran, U. Ali, and A. Hasnain, (2021) “Impact of blends of aqueous amines on absorber intercooling for post combustion CO2 capture system" Energy & Environment 32(5): 921–944. DOI: 10.1177/0958305X20982835.
  5. [5] V. Buvik, S. J. Vevelstad, O. G. Brakstad, and H. K. Knuutila, (2021) “Stability of Structurally Varied Aqueous Amines for CO2 Capture" Industrial & Engineering Chemistry Research 60(15): 5627–5638. DOI: 10.1021/ACS.IECR.1C00502.
  6. [6] F. Barzagli, C. Giorgi, F. Mani, and M. Peruzzini, (2019) “Comparative study of CO2 capture by aqueous and nonaqueous 2-amino-2-methyl-1-propanol based absorbents carried out by 13C NMR and enthalpy analysis" Industrial & Engineering Chemistry Research 58(11): 4364–4373. DOI: 10.1021/ACS.IECR.9B00552.
  7. [7] X. E. Hu, L. Liu, X. Luo, G. Xiao, E. Shiko, R. Zhang, X. Fan, Y. Zhou, Y. Liu, Z. Zeng, et al., (2020) “A review of N-functionalized solid adsorbents for post-combustion CO2 capture" Applied Energy 260: 114244. DOI: 10.1016/j.apenergy.2019.114244.
  8. [8] I. O. Furtado, T. C. dos Santos, L. F. Vasconcelos, L. T. Costa, R. G. Fiorot, C. M. Ronconi, and J. W. d. M. Carneiro, (2021) “Combined theoretical and experimental studies on CO2 capture by amine-activated glycerol" Chemical Engineering Journal 408: 128002. DOI: 10.1016/j.cej.2020.128002.
  9. [9] M. Pardakhti, T. Jafari, Z. Tobin, B. Dutta, E. Moharreri, N. S. Shemshaki, S. Suib, and R. Srivastava, (2019) “Trends in solid adsorbent materials development for CO2 capture" ACS applied materials & interfaces 11(38): 34533–34559. DOI: 10.1021/acsami.9b08487.
  10. [10] I. Sharma, D. Friedrich, T. Golden, and S. Brandani, (2020) “Monolithic adsorbent-based rapid-cycle vacuum pressure swing adsorption process for carbon capture from small-scale steam methane reforming" Industrial & Engineering Chemistry Research 59(15): 7109–7120. DOI: 10.1021/acs.iecr.9b05337.
  11. [11] N. Q. Long and T. X. Loc, (2016) “Experimental and modeling study on room-temperature removal of hydrogen sulfide using a low-cost extruded Fe2O3-based adsorbent" Adsorption 22(3): 397–408. DOI: 10.1007/s10450-016-9790-0.
  12. [12] C. Feng, E. Jiaqiang, W. Han, Y. Deng, B. Zhang, X. Zhao, and D. Han, (2021) “Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review" Renewable and Sustainable Energy Reviews 144: 110954. DOI:10.1016/J.RSER.2021.110954.
  13. [13] R. Yu et al., (2020) “Comparative study on the preparation of Co/HZSM-5 molecular sieves by ion exchange method and impregnation method" Journal of Applied Science and Engineering 23(4): 695–699. DOI: 10.6180/JASE.202012_23(4).0014.
  14. [14] M. Plaza, S. Garcia, F. Rubiera, J. Pis, and C. Pevida, (2010) “Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies" Chemical Engineering Journal 163(1-2): 41–47. DOI: 10.1016/J.CEJ.2010.07.030.
  15. [15] G. Zhan, L. Bai, S. Zeng, Y. Bai, H. Su, B.Wu, F. Cao, D. Shang, Z. Li, X. Zhang, et al., (2020) “Dynamic Process Simulation and Assessment of CO2 Removal from Confined Spaces Using Pressure Swing Adsorption" Industrial & Engineering Chemistry Research 59(37): 16407–16419. DOI: 10.1021/acs.iecr.0c02255.
  16. [16] X. Qian, G. Bai, P. He, Z. Fei, Q. Liu, Z. Zhang, X. Chen, J. Tang, M. Cui, and X. Qiao, (2018) “Rapid CO2 adsorption over hierarchical ZSM-5 with controlled mesoporosity" Industrial & Engineering Chemistry Research 57(49): 16875–16883. DOI: 10.1021/ACS.IECR.8B03325.
  17. [17] A. A. Dabbawala, I. Ismail, B. V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod, and Y. AlWahedi, (2020) “Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture" Microporous and Mesoporous Materials 303: 110261. DOI: 10.1016/j.micromeso.2020.110261.
  18. [18] H. Qu, Y. Ma, B. Li, and L. Wang, (2020) “Hierarchical zeolites: synthesis, structural control, and catalytic applications" Emergent Materials 3(3): 225–245. DOI: 10.1007/s42247-020-00088-z.
  19. [19] S. Ullah, M. A. Bustam, A. G. Al-Sehemi, M. A. Assiri, F. A. A. Kareem, A. Mukhtar, M. Ayoub, and G. Gonfa, (2020) “Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; anexperimental and adsorption isotherms study" Microporous and Mesoporous Materials 296: 110002. DOI: 10.1016/j.micromeso.2020.110002.
  20. [20] X. Du, W. Guang, Y. Cheng, Z. Hou, Z. Liu, H. Yin, L. Huo, R. Lei, and C. Shu, (2020) “Thermodynamics analysis of the adsorption of CH4 and CO2 on montmorillonite" Applied Clay Science 192: 105631. DOI:10.1016/j.clay.2020.105631.
  21. [21] J. Bujdak, (2020) “Adsorption kinetics models in clay systems. The critical analysis of pseudo-second order mechanism" Applied Clay Science 191: 105630. DOI: 10.1016/j.clay.2020.105630.
  22. [22] N. Q. Long, H. T. Vuong, H. K. P. Ha,W. Kuniawan, H. Hinode, and T. Baba, (2016) “Preparation, characterization and H2S adsorptive removal of ion-exchanged zeolite X" ASEAN Engineering Journal 5(1): 4–14.
  23. [23] L. Li, Y. Duan, S. Liao, Q. Ke, Z. Qiao, and Y. Wei, (2020) “Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST)" Chemical Engineering Journal 386: 123945. DOI: 10.1016/j.cej.2019.123945.
  24. [24] L. S. M. Nazir, Y. F. Yeong, and T. L. Chew, (2020) “Controlled growth of Faujasite zeolite with NaX topology by manipulating solution aging and Na2O/Al2O3 ratios" Colloids and Surfaces A: Physicochemical and Engineering Aspects 600: 124803. DOI: 10.1016/j.colsurfa.2020.124803.
  25. [25] R. Zhang, P. Zhong, H. Arandiyan, Y. Guan, J. Liu, N. Wang, Y. Jiao, and X. Fan, (2020) “Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites" Frontiers of Chemical Science and Engineering 14(2): 275–287. DOI: 10.1007/s11705-019-1905-1.
  26. [26] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, (2015) “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)" Pure and applied chemistry 87(9-10): 1051–1069. DOI: 10.1515/PAC-2014-1117.
  27. [27] X. Du, Y. Cheng, Z. Liu, H. Yin, T.Wu, L. Huo, and C. Shu, (2021) “CO2 and CH4 adsorption on different rank coals: A thermodynamics study of surface potential, Gibbs free energy change and entropy loss" Fuel 283: 118886. DOI: 10.1016/j.fuel.2020.118886.
  28. [28] J. H. Lee and D. H. Suh, (2021) “Entropy, enthalpy, and Gibbs free energy variations of 133Cs via CO2-activated carbon filter and ferric ferrocyanide hybrid composites" Nuclear Engineering and Technology 53(11): 3711–3716. DOI: 10.1016/J.NET.2021.06.006.
  29. [29] A. Kiselev, (1961) “Surface chemistry, adsorption energy, and adsorption equilibria" Quarterly Reviews, Chemical Society 15(1): 99–124. DOI: 10.1039/QR9611500099.
  30. [30] V. Garshasbi, M. Jahangiri, and M. Anbia, (2017) “Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays" Applied Surface Science 393: 225–233. DOI: 10.1016/J.APSUSC.2016.09.161.
  31. [31] X. Du, W. Guang, Y. Cheng, Z. Hou, Z. Liu, H. Yin, L. Huo, R. Lei, and C. Shu, (2020) “Thermodynamics analysis of the adsorption of CH4 and CO2 on montmorillonite" Applied Clay Science 192: 105631. DOI:10.1016/j.clay.2020.105631.
  32. [32] H. G. H. Tran, T. T. P. Nguyen, T. L. Bui, C. V. Dang, N. Q. T. Le, T. G. H. Nguyen, T. A. Ngo, Q. L. Nguyen, et al., (2021) “Mesostructured Zeolites Prepared by One-Pot Top-Down Synthesis Route for Carbon Dioxide Adsorption" Chemical Engineering Transactions 83: 67–72. DOI: 10.3303/CET2183012.
  33. [33] Y. Xiao, G. He, and M. Yuan, (2018) “Adsorption equilibrium and kinetics of methanol vapor on zeolites NaX, KA, and CaA and activated alumina" Industrial & Engineering Chemistry Research 57(42): 14254–14260. DOI: 10.1021/ACS.IECR.8B04076.


    
 

0.9
2021CiteScore
 
 
42nd percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.